如图所示,正方形ABCD,M是对角线BD上一点,MF⊥AD于点E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 13:19:37
如图所示,正方形ABCD,M是对角线BD上一点,MF⊥AD于点E
如图所示,点P是正方形ABCD内一点,且△PBC是等边三角形,则∠PAD

∠PAD=60度因为△PBC是等边三角形所以∠PBC=∠PCB=∠BPC=60度所以∠APD=∠BPC=60度所以∠PAD=60度

如图所示四边形ABCD和CGEF分别是边长为xcm和ycm的正方形

两个正方形的面积之和减去三角形ABG面积减去三角形FEG面积减去三角形ADF面积x平方+y平方-1/2乘以x乘以(x+y)-1/2乘以y平方-1/2乘以x乘以(x-y)=1/2乘以y平方

正方形ABCD的边长是2,E,F分别是AB和CD的中点,将正方形沿EF折成直二面角(如图所示).M为矩形AEFD内一点,

如图,过点M作MH⊥EF,连接BH,∵∠MBE=∠MBC,∴H在∠EBC的角平分线上,即∠EBH=45°,∴BH=2,在直角三角形MBH中,由于MB和平面BCF所成角的正切值为12,∴tan∠MBH=

已知,如图所示,正方形ABCD,E、M、F、N分别是AD、AB、BC、CD上的点,若EF⊥MN,求证:EF=MN.

证明:如图,过点E作EG⊥BC于G,过点M作MH⊥CD于H,∵四边形ABCD是正方形,∴EG=MH,EG⊥MH,∴∠1+∠3=90°,∵EF⊥MN,∴∠2+∠3=90°,∴∠1=∠2,∵在△EFG和△

  如图所示,四边形ABCD是长、宽分别为2cm和1cm的长方形,四边形DCEF为正方形,M是线段AB上的点,

先算出四边形ABCD和四边形DCEF的面积剪去三角形AMD,DFE,MBE的面积

我们知道,正方形的四条边相等,四个角都是直角.如图所示,点M是正方形ABCD的边AB的中点,点N在线段AD上,且AN=1

三角形CMN是直角三角形.理由如下:设正方形ABCD的边长为4,求出Rt△AMN中,MN=5,同理求出MC=20,NC=5,(5分)∵MN2+MC2=(5)2+(20)2=25,NC2=52=25,∴

如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,BB1=2,M是线段

(Ⅰ)连接D1O,如图,∵O、M分别是BD、B1D1的中点,BD1D1B是矩形,∴四边形D1OBM是平行四边形,∴D1O∥BM.(2分)∵D1O⊂平面D1AC,BM⊄平面D1AC,∴BM∥平面D1AC

如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长2的正方形,0为AC与BD的交点,B1B=根号2,M是线

这个好几种方法呢,选择最简单的吧.过点B作BE⊥AB1交AB1于点E,连接CE.∵BC⊥平面ABB1,∴BC⊥AB1,∴AB1⊥平面BEC,∴AB1⊥CE∴∠CEB即为所求角RT△ABB1内,AB=2

正方形ABCD的边长是2,在如图所示的平面直角坐标系中画出这个正方形!

将4个点连起来就行了,每个点到顶点的距离为根号2. 

如图所示,点E是正方形ABCD内一点.

这个问题已经有很多的现成回答了啊,提示:将△CBE绕B点旋转90°,得△BE'A,连接EE'       135°

我们知道,正方形的四条边相等,四个角都是直角,如图所示,点M是正方形ABCD的边AB的中点,点N在线段AD上,且AN=1

直角三角形.设正方形边长为4a,AM=2a,AN=a,MN的平方等于5a平方,ND=3a,DC=4a,NC的平方等于25a平方,MB=2a,BC=4a,MC的平方等于20a的平方,所以是△CMN直角三

如图所示在正方形ABCD中,M是BC上一点 若已知AM=BM+DN 易证AN平分角DAM 请问是什么证得

解题思路:延长CD到E,使DE=BM,连接AE易证△ADE≌△ABM所以DE=BM,AE=AM,∠BAM=∠EAD已知AM=BM+DN所以AE=NE所以∠EAN=∠ENA即∠ENA=∠EAD+∠DAN

如图所示,abcd是一个质量为m,边长为L的正方形金属线框,从图示位置自由下落

C,如果不计较繁琐的计算过程,按照解选择题的速度原则.思路如下:此处线框的一个边产生的电能=线框经过磁场区域时本应该增加的动能=经过磁场区域时减少的势能=mgl(能量守恒),但是每次线框有2个边要产生

如图所示,ABCD为正方形.

(1)DP=DA,证明:连接AP,BP,∵点P是△ABC内心,∴∠BAP=∠CAP,∵四边形ABCD是正方形,∴∠ABP=∠CBP=45°,∴P在对角线BD上,∴∠DPA=∠DBA+∠BAP=45°+

如图所示,正方形ABCD的边长为4,M在AB边上,BM=3,N是BD上一动点,则AN+NM的最小值是( ).

连接CM交BD于N,在连接AN,则AN=CN,∴AN+NM=CN+NM=CM∵M、N、C三点共线,∴CM就是AN+NM的最小值,在Rt⊿CBM中:BC=4,BM=3,∴CM=5∴AN+NM的最小值为5

如图所示,正方形ABCD和正方形EFGH的边长分别为a和b,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过

不变分析:设旋转后是正方形则边长为1/2a*1/2a=1/4a^2若不为正方形则可以割补成为一个正方形(初四旋转会学,初三全等三角形也可以证明)

高二立体几何证明题!已知正方形ABCD-A1B1C1D1,其中E,F,G,H,M,N分别是各条棱上的中点(如图所示),求

分别证明MNFG、MHFE和HGEN是平行四边形就可以了,画I,J分别为A1B1,B1C1的中点,连接IJ证明:ABCD//A1B1C1D1B1J//BF,B1I//BG,且∠A1B1C1=∠ABC,

电磁感应题目:如图所示,abcd是一个质量为m,边长为L的正方形金属线框,从图示位置自由下落

BC设线圈刚进入第一个磁场时速度为V1,那么mgh=mV1²/2,V1=根号2gh设线圈刚进入第一个磁场时速度为V2,那么V2²-V1²=2ghV2=根号2V1.根据题意

如图所示,在正方形ABCD中,M是CD的中点,E是CD上的一点,且∠BAE=2∠DAM,求证AE=BC+CE.

取BC中点N,过N作NH⊥AE,垂足HM是CD的中点,可知BN=DM易证ΔABN≌ΔADM则有∠BAN=∠DAM因∠BAE=2∠DAM故AN平分角BAE所以有NB=BH由ΔABN≌ΔAHN可得AH=A