如图所示,矩形ABCD,AB=4,BC=4根号3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:14:47
证明:(1)设PD的中点为E,连接AE、NE,由N为PC的中点知EN∥.12DC,又ABCD是矩形,∴DC∥.AB,∴EN∥.12AB又M是AB的中点,∴EN∥.AM,∴AMNE是平行四边形∴MN∥A
你的图呢?
因为AE+ED=AB.所以AE+ED=10,设AE=X,ED=10-XAD平方+AE平方=DE平方所以4平方+X平方=(10-x)平方x=4.2,DE=ED=10-4.2=5.8
考点:平面与平面垂直的判定,直线与平面平行的判定,直线与平面垂直的性质专题:证明题分析:(1)欲证MN∥平面PAD,根据直线与平面平行的判定定理可知只需证MN与平面PAD内一直线平行即可,设PD的中点
∵相似∴AD:CD=AB:CF∵AD=CF+1∴CF+1:1=1:CF∴CF=(根号5-1)/2∴AD=(根号5+1)/2
∵矩形ABCD中∴AO=OB∵∠AOB=60°∴△ABO为正三角形∴AO=AB=3cm∴AC=2AO=6cm
(1)如图1,过点G作GM⊥BC于M.在正方形EFGH中,∠HEF=90°,EH=EF,∴∠AEH+∠BEF=90°,∵∠AEH+∠AHE=90°,∴∠AHE=∠BEF,又∵∠A=∠B=90°,∴△A
△BCF和△D′AF中AD′=AD=BC∠D′=∠B=90∠AFD′=∠CFB所以△D′AF≌△BCF,CF=AF因为AF+BF=AB=8所以设CF为X,则BF为8-X在RT△BCF中(8-X)
设AD=X,则DM=1/2AD=1/2X,∵矩形DMNC∽矩形ABCD,∴DM/DC=DC/AD,又∵DC=AB=4,∴(1/2X)/4=4/X又∵X>0,∴X=4√2即AD=4√2
(1)证明:∵在直四棱柱ABCD-A1B1C1D1中,底面ABCD是矩形,∴以D1为原点,D1A1为x轴,D1C1为y轴,D1D为z轴,建立如图所示空间直角坐标系.∵AB=1,BC=2,AA1=2,E
(1)设AN的长为x米(x>4)由题意可知:∵|DN||AN|=|DC||AM|,∴x−4x=6|AM|,∴|AM|=6xx−4,∴SAMPN=|AN|•|AM|=6x2x−4,由SAMPN<150,
16:9AD即为新的矩形的长边俩矩形又相似
解:AE=BE,AD=BC,∠A=∠B=90°,则⊿DAE≌⊿CBE,得DE=CE.又∠DEC=90°,则⊿DEC为等腰直角三角形,故∠CDE=∠ADE=45°,AD=AE=BE=BC.故AD+AB=
图咧……再问:图片网址http://www.ykw18.com/UploadFile/TQuestion/2012/09/26/17/10/8d845bec.png
延长CM 交DA延长线于点EPE为面PCM 与面PAD的交线(PE显然即在面PAD中又在面PMC中)易证M为CE中点与是MN//PE(中位线)于是(1)得证PA垂直底面,所心PA垂直CDCD垂直AD所
S矩形ABCD=3S矩形ECDF推出AF=2FD——(1)矩形ABCD~矩形ECDF且AB=2推出AF*FD=FE*FE=AB*AB=4(2)设FD=x,则由(1)得AF=2x未知数代入(2)中,2x
答案=12求解如下:答:因为:S矩形ABCD=9S矩形ECDF所以:AB*BC=9*EC*CD,又因为:AB=CD=2所以:BC=9EC(1)因为:矩形ABCD~矩形ECDF所以:AB/EC=BC/C
S矩形ABCD=4S矩形ECDF==>相似比为2矩形ABCD相似矩形ECDF==>BC:CD=相似比2CD=AB=2BC=4面积=2*4=8
(1)证明:在平面图形中,连接MN,设MN与AB交于点G∵ABCD和ABEF都是矩形且AD=AF∴AD‖BE且AD=BE∴四边形ADBE是平行四边形又AM=DN,根据比例关系得到MN‖AD折叠之后,M