如图点P在正方形ABCD-ABCD的对角线BD上角PDA=60°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:49:10
延长CE至G使CE=EG(倍长)易证△GAE≌△ECB所以AG=CB=AD易证△EBC≌△CDF所以∠FDC=∠BCE所以∠FDC+∠ECD=90°在RT△GPD中A为斜边GD中点所以AD=AP(斜边
(1)过E作PB垂线,交于E‘连接EF,E'A.由中位线定理得EE'//=1/2BC//=AF.所以平面AFEE‘为平行四边形.则EF//E'A又E'A在面PBC内,所以EF//面PAB字数限制只能一
四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角.以上性质可以根据圆周角等于它所对弧的度数的一半进行证明.此
将其还原成正方体ABCD-PQRS,连接SC,AS,则PB∥SC,∴∠ACS(或其补角)是PB与AC所成的角,∵△ACS为正三角形,∴∠ACS=60°,∴PB与AC所成的角是60°,故答案为:60°
设O=AC∩BD则OM∥=PA/2﹙中位线﹚OM∈平面MBD.A不在平面MBD∴PA∥平面MBD
(1)CD⊥ADP∴CD⊥APEF∥=AP/2﹙中位线﹚∴EF⊥CD⑵设PD=1取坐标系D﹙000﹚A﹙100﹚C﹙010﹚P﹙001﹚设G﹙a,0,b﹚∈PAD则F﹙1/2,1/2,1/2﹚GF=﹛
(2)做AM垂直PB交PB于点M,连接MC因为PD=DC,PD垂直底面ABCD,设正方形边长a易得PA=PC=√2a且三角形PAB与三角形PAC全等所以AM垂直PB,MC垂直PB即角AMC为所求角度因
x+y=大正方形边长因为pqrs是正方形,四个三角形全等由此推出答案.
(1)证明:连接BD交AC于点O,连接EO.∵O为BD中点,E为PD中点,∴EO∥PB.∵EO⊂平面AEC,PB⊄平面AEC,∴PB∥平面AEC.(2)∵四边形ABCD是正方形∴BD⊥AC,∵PA⊥平
十几年了,最近突然开始回顾学生时代,只有这立体几何还记得,(1)求证:EF⊥CD;∵ABCD为矩形∴CD⊥AD又∵PD⊥平面ABCD∴PD⊥CD∴CD⊥平面PAD,CD⊥PA∵E、F均为中点∴EF∥P
解由题意AB=a,PD=a,PA=PC=√2a,已知AD=DC=a所以△PAD,△PDC都是等腰直角三角形,易知PD⊥平面ABCD,PB=√3a,勾股定理算得△PAB,△PCB都是直角三角形PA=PC
(1)PC=2a,PD=DC=a,∴△PDC是Rt△,且PD⊥DC,同理PD⊥AD,又AD∩DC=D,∴PD⊥平面ABCD.(2)连BD,因ABCD是正方形,∴BD⊥AC,又PD⊥平面ABCD.BD是
(1)∵四边形ABCD为正方形,∴∠ABC=∠DCB=90°,AB=CD,∵BP=PC,∴∠PBC=∠PCB,∴∠ABP=∠DCP,又∵AB=CD,BP=CP,∴△ABP≌△DCP(SAS).(2)设
(1)因PA垂直底面ABCD,所以PA垂直BD又因底面ABCD为正方形,所以BD垂直ACPA、AC是在平面PAC内因此BD垂直平面PAC(2)45度PA垂直底面ABCD角PAD为90度又因PA=AB,
ABCD面积为1PAB面积为0.5PAD面积为0.5PB=√2AC=√2PC=√3PBC是直角三角形同理PCD也是直角三角形面积为0.5√2四棱锥表面积为2+√2
(1)证明:作PB中点Q,连结AQ.DQ.EQ因为点Q.E分别是PB.PC的中点所以EQ//BC又AD//BC,则EQ//AD即点A.D.E.Q四点共面因为PD⊥平面ABCD,所以PD⊥AD又在底面正
设底面正方形边长为1,DE=√5/2,△PDB是RT△,BD=√2,PD=1,PB=√3,DF=PB/2=√3/2,PA=√2,EF=PA/2=√2/2,根据勾股定理
证明:AB、CP都延长交于点Q,则可轻而易举地证得角QPB是直角,点A是BQ的中点.在任何直角三角形中,斜边的中点到三个角的距离都相等.即有AQ=AB=AP.