如图甲在三角形abc中,沿角bac的平分线ab
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 12:43:44
直角三角形,a长边,对角a是直角
由正弦定理,b/sinB=c/sinC得b=sinB·c/sinC代入原式得cosC·sinB·c/sinC=c·cosBsinB·cosC=sinC·cosBsinB·cosC-sinC·cosB=
在三角形BCD中sin15/sin45=10/BC,可以算出BC在三角形ABC中tan30=BC/AB,可以求出AB
角A、C、B成等差数列,角A-角C=角C-角B,角A+角B=2角C.角C=90度.(1)c的长=根号下41.(2)面积=1/2*5*4=10
设三角形的顶点为A、B、C,对应的边长为a、b、c.过顶点B做AC边上的垂线,设垂线长度为h,则有h=asinC.SΔABC=h*b/2=absinC/2正弦定理a/sinA=b/sinB可得b=as
正弦定理a/sinA=b/sinB=>a/b=sinA/sinBa*cosA=b*cosB=>a/b=cosB/cosA则cosB/cosA=sinA/sinB即sinAcosA-cosBsinB=0
用余弦定理:c^2=a^2+b^2-2*a*b*CosC∴a^2+b^2
解题思路:利用正弦定理化边为角,然后用两角和与差的正弦公式进行化简解题过程:
如图:在图1中:在三角形DEF中,∠DEF=90-∠FDE,在三角形BDA中,∠FDE=180-∠B-∠BAD=180-∠B-1/2∠A,在三角形ABC中,∠A=180-∠B-∠C,所以,∠FDE=1
易证三角形ADC是等腰三角形,所以∠ADC=∠C∠ADC=∠B+1/3∠A∠A+∠B+∠C=180°所以∠A+∠B+(∠B+1/3∠A)=180°作ED//AF则∠EDA=∠EAD,所以ED=EA而B
sinasinb0即cos(a+b)>0,在三角形内,所有角都小于180度,且cos(a+b)>0所以0
cosB=(a^2+c^2-b^2)/2ac=(a^2+c^2-ac)/2ac1/2=(a^2+c^2-ac)/2acac=a^2+c^2-aca^2-2ac+c^2=0(a-c)^2=0a=c即∠A
等腰直角三角形显然sinC≤1,cosB≤1,所以b≤a,c≤a由a/sinA=b/sinB=c/sinC得sinB=sinAsinC,sinC=sinAcosB,所以(sinB)^2=(sinAsi
∵cosB/cosA=a/b又:根据正弦定理:a/b=sinA/sinB∴cosB/cosA=sinA/sinB∴cosAsinA=cosBsinB∴2sinAcosA=2sinBcosB∴sin2A
B+C=180-ACOS(180-A)=-COSA诱导公式
已知,AD=AC,BE=BC,可得:∠ADC=∠ACD,∠BEC=∠BCE,即有:∠EDC=∠ACD=∠ACE+∠ECD,∠DEC=∠BCE=∠BCD+∠ECD,∠ECD=180°-(∠EDC+∠DE
不一定是.如果再加一个条件:a=b或a=c或b=c就对了.
当在一个三角形中,内角和便为180度.由角A减角B=角C,得到角A等于角B加角C.由于内角和为180度,则等量代换得到2角A=180度.角A等于90度.
解题思路:根据题意,由正弦定理和余弦定理可求解题过程:见附件最终答案:略