如图直线y=-2分之1x 2交y轴于A点,且与直线y=x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:49:07
如图直线y=-2分之1x 2交y轴于A点,且与直线y=x
初三数学题如图,已知抛物线y=2分之1x平方+mx+n(n不等于0)与直线y=x交于A.B两点,与y轴交与点C,OA=O

BC‖x轴.x=0,OC=-n-n=-根号下(-2n),解得n=-2抛物线的解析式为:y=1/2x2+x-2(2)DE=根号2,点D的横坐标为x,(点E在点D的上方),因此D(x,x)E(x+1,x+

如图抛物线y=2分之1x2-x+a与x轴交于AB两点,其顶点在直线y=-2x上.(1)求a的值.(2)求AB两点的坐标.

1)抛物线y=1/2x²-x+a的顶点坐标为[1,1/2(2a-1)]顶点在直线y=-2x则1/2(2a-1)=-2*12a-1=-4a=-3/22)抛物线的解析式;y=1/2x²

如图,抛物线y=2分之1x²-x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=-2x上

1、y=1/2x²-x+a=1/2(x-1)²+a-1/2顶点:x=1y=-2x=-2∴a-1/2=-2a=-3/22、1/2x²-x-3/2=0x²-2x-3

如图,在平面直角坐标系,直线y=kx+1交y轴与C,与抛物线y=-x^2+bx+c交于AB两点

因为在三角形PFG中,两边之差小于第三边,所以lPG-GFl小于等于PF当lPG-GOl取得最大值时,P、F、G不能构成三角形,所以P、F、G共线,即点G在PF的延长线上.

如图,已知抛物线y=-1/2x2+x+4交x轴的正半轴于点A,交y轴于点B.

(1)令x=0,得y=4即点B的坐标为(0,4)令y=0,得(-1/2)x²+x+4=0则x²-2x-8=0∴x=-2或x=4∴点A的坐标为(4,0)直线AB的解析式为(y-0)/

如图 抛物线y=-x2+2x+3与x轴交于A,B 两点,与 y轴交于点C,对称轴与抛物线交于点P,与直线BC 交于点M,

(1).y=-x²+2x+3=-(x²-2x)+3=-[(x-1)²-1]+3=-(x-1)²+4对称轴:x=1;顶点P(1,4);C(0,3);A(-1,0)

如图,抛物线y=12x2-x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=-2x上.

(1)∵y=12x2-x+a=12(x-1)2+a-12,∴抛物线的顶点坐标为(1,a-12),∵顶点在直线y=-2x上,∴a-12=-2×1,∴a=-32,∴抛物线的解析式为y=12x2-x-32,

如图1,已知直线y=kx与抛物线y=-4 27 x2+22 3 交于点A(3,6). (1)求直线y=kx的解析式和线段

(1)把点A(3,6)代入y=kx得;∵6=3k,∴k=2,∴y=2x.OA=3倍根号5(2)QM分之QN是一个定值,理由如下:如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H.①当QH与QM重合

如图11,在平面直角坐标系中,直线Y=1\2X+4交X轴于点A,交Y轴于点B.(1)直线Y=-X+10交直线AB于点D,

1.要使S三角形AEF=1\4S三角形ACD,且EF//CD,则AF=1/2AC根据A,C的坐标可得F(1,0)或(-17,0)设EF的解析式Y=-X+b,将F坐标代入Y=-X+1或Y=-X-172.

如图,直线y=3x-3和直线y=-2分之1x-4分别交x轴于点A,B

(2)q(2,3).ac=ap=根号10.过点p做x轴垂线,垂足为m,ph=3,三角形acg全等于三角形pam,所以ap/ac=pm/ag,所以ag=3,cg=1,同理,eh=6,所以cg+eh=7(

如图,直线y=-4分之3x+6交x,y轴于点A,B,直线y=4分之3x-2交y轴于C点,两直线相交于点(1)求两直线交点

解方程组y=-4分之3x+6y=4分之3x-2得x=16/3,y=2交点P的坐标(3分之16,2)直线y=4分之3x-2交x轴于(8/3,0﹚S三角形pcA=½×﹙8-8/3﹚×2+

如图,直线y=-4分之3x+5与x轴,y轴交与A,B两点

什么啊?说清楚========再问:什么什么啊,这很清楚啊!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

如图,已知抛物线y= 1 2 x2+bx与直线y=2x交于点O(0,0),A

题不完整,不知是否如下题:如图,已知抛物线y=½x2+bx与直线y=2x交于点O(0,0),A(a,12).点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点

如图12,直线y=kx-1与x轴、y轴分别交与B、C两点,tan∠OCB=2分之1

(1)因为:直线y=kx-1与y轴交于点C,则点C(0,-1).所以:OC=1,又tan∠OCB=2分之1,所以:OB=1/2,即:B(1/2,0),又B点为直线y=kx-1与x轴的交点,所以:1/2

如图,直线x=t与反比例函数y=x分之2,y=-x分之1的图像分别交于B,C两点,A为y轴上的任意一点,则三角形ABC的

∵直线x=t与y轴平行∴y轴上A点到直线x=t的距离=|t|也即BC边上的高=|t|∵直线x=t与反比例函数y=x分之2,y=-x分之1的图像分别交于B,C两点∴BC=|yB-yC|=|(2/t)-(

如图,过抛物线x2=4y焦点的直线依次交抛物线与圆x2+(y-1)2=1于点A、B、C、D,则|AB|×|CD|的值是(

方法一:特殊化,抛物线x2=4y的焦点是F(0,1),取过焦点的直线y=1,依次交抛物线与圆x2+(y-1)2=1的点是A(-2,1)、B(-1,1)、C(1,1)、D(2,1),∴|AB|×|CD|

如图,直线AB解析式y=2分之3x-3分别交x轴和y轴(有图)

分别令x=0,y=0代人直线解析式得到A、B两点坐标.B﹙0,-3﹚、A﹙9/2,0﹚∴△AOB面积=½×3×9/2=27/4分别作各边上的中线,则每一条中线都将△AOB的面积分成相等的两个

如图,已知抛物线y=- 1 2 x2+x+4交x轴的正半轴于点A,交y轴于点B.

(1)令x=0,得y=4即点B的坐标为(0,4)令y=0,得(-1/2)x²+x+4=0则x²-2x-8=0∴x=-2或x=4∴点A的坐标为(4,0)直线AB的解析式为(y-0)/

如图已知直线y=kx+b与抛物线y=x2^交与P,Q两点,p横坐标为2且与x轴交与M(2,0)求直线y=kx+b表达

1、因为P在抛物线y=x²上,且横坐标为-2所以P的坐标(-2,4)P(-2,4),M(2,0)代入直线方程y=kx+b-2k+b=42k+b=0解得k=-1,b=2所以直线为y=-x+22

如图,已知直线L1:y=2分之1x+4,交x轴,y轴分别于点B、A两点;L2⊥L1于点A,交x轴于点C

(1)因为直线L1分别与X轴、Y轴交于B、A两点,所以当Y=0时,X=-8,B坐标为(-8,0);当X=0时,Y=4,所以A(0,4)假设直线L2:Y=kx+b,又由上所知,因为L2垂直于L1于点A(