如图经过点a 0-4 的抛物线y 1 2x2 bx c

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 13:13:02
如图经过点a 0-4 的抛物线y 1 2x2 bx c
如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1) 求出抛物线的解析式;(2) P

Y=ax2(2次方)+bx+c,代入三点,得:c=-2,a=-1/2,b=5/2Y=(-1/2)x2(2次方)+(5/2)x-2然后没有图,P不知道……

如图1-4-50,点C、B分别为抛物线C1:y1=x平方+1,抛物线C2:a2x平方+b2x+c2的顶点,分别过点B、C

这个是08年大连的中考最后一题,以下是我从网上找的--图的话有网址,自己看吧(1)如图9,连结AC、BC,直线AB交y轴于点E.∵AB‖x轴,CD‖x轴,C、B为抛物线C1、C2的顶点,∴AC=CB,

如图,已知抛物线x2=4y,过抛物线上一点A(x1,y1)(不同于顶点)作抛物线的切线l,并交x轴于点C,在直线y=-1

(1)证明:∵y=x24,∴y′=x2,∴kl=y′|x=x1=x12,∴l:y=x12(x−x1)+x124=x12x−x124,∴C(x12,0),设H(a,-1),∴D(a,0),∴TH:y=-

如图,点o为坐标原点,直线l经过抛物线C:y²=4x的焦点F.

二者相切抛物线:y^2=4x因此,焦点为F=(1,0)设A=(x0,y0)那么,圆的半径r=√[(x0-1)^2+(y0)^2]=√[(x0-1)^2+4x0]=(x0+1)因此,B=(1-r,0)=

如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求抛物线的解析式.

(1)用交点式y=a(x-x1)(x-x2)得到y=a(x-4)(x-1),再将(0,-2)代入y=a(x-4)(x-1)中,得到a=-1/2.即得抛物线方程y=-1/2(x-4)(x-1)(2)存在

如图,抛物线经过A(-3,0)B(0,4)C(4,0)三点 (1)求抛物线的解析式 (2)已知

我把解题过程拍下来了效果不太好,请仔细看.这是第一张.下一张需要发吗?

如图,抛物线经过 A(4,0),B(1,0),C(0,-2)三点.

你在做第①节时错了,并且只考虑到一种情况.应分M在A的左侧与M在A的右侧两种可能.正确的做法是:①当△OAC∽△MPA时,OA/OC=MP/MA=2/1(Ⅰ)(1/2m^2-5/2m+2):(4-m)

如图,已知抛物线y=ax²+bx+c经过A(4,0),B(2,3),C(0,3)三点.求抛物线的解析式

1、抛物线的解析式为y=-3/8x²+3/4x+3对称轴为x=12、A点关于x=1的对称点为D(-2,0),直线BD的方程为3x-4y+6=0,它交直线x=1于M(1,9/4),此点为所求

如图①,抛物线y=ax2+bx的对称轴为直线x=-3/2,且抛物线经过点A(-4,2),AB平行于x轴,交抛物线于点B.

⑴由已知:-b/(2a)=-3/2,2=16a-4b,解得:a=1/2,b=3/2,∴二次函数解析式为:Y=1/2X^2+3/2X,令Y=2,X^2+3X-4=0,X=-4或1,∴B(1,2).⑵过B

如图,已知抛物线y2=4x的焦点为F,过点P(2,0)的直线交抛物线于A(x1,y1)B(x2,y2)两点

(1)直线斜率kAB=(y2-y1)/(x2-x1)把y^2=4x代入得kAB=4/(yi+y2)直线方程为y=4/(y1+y2)(x-2)代入点A(x1,y1)得y1(y1+y2)=y1^2-8得y

如图,抛物线y1=-ax²-ax=1经过点P(-1/2,9/8),且与抛物线y2=ax²-ax-1相

如图,抛物线y1=-ax2-ax+1经过点P(-1/2,9/8),且与抛物线y2=ax2-ax-1相交于A,B两点.(1)求a的值解析:∵抛物线y1=-ax2-ax+1经过点P(-1/2,9/8)∴9

如图,抛物线经过A(-3,0),B(0,4),C(4,0)三点,(1)求抛物线的解析式(2)

1、设方程为y=a(x+3)(x-4),代入(0,4),得:a=-1/3所以,抛物线方程为:y=-1/3(x+3)(x-4)=-1/3x^2+1/3x+42、连结BP,当线段PQ被BD垂直平分时,BP

已知,如图,直线l:y=1/3x+b,经过点M(0,1/4),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(

(1)因为M(0,1/4)在y=1/3x+b上,所以1/4=1/3×0+b即b=1/4(2)由(1)得y=1/3x+1/4因为B1(1,y)在l上,所以当x=1时,y1=1/3×1+1/4=7/12所

一道初中函数题抛物线y=ax=bx=c(a0)的对称轴为直线x=1,且过点(-1,y1)(2,y2),比较y1 y2的大

抛物线y=ax²+bx+c(a≠0)的对称轴公式x=-b/2a=1所以:b=-2ay1=a-b+cy2=4a+2b+cy1-y2=-3a-3b=-3a+4a=a答:当a>0时,y1>y2当a

如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.

这题我没做答案,我给你说下思路吧.(2)求相似无非是那几种方法,这题明显是用角角相似,因为两个三角形都有一个已知条件,起码都是直角三角形.然后确定P点的位置,因为A为三角形的顶点且垂足为M,所以A与M

如图,抛物线经过A(4,0)、B(1,0)、C(0,-2)三点. (1)求出抛物线的解析式

(1)设二次函数为y=ax^2+bx+c代入A(4,0)B(1,0)C(0,-2)得a=-1/2,b=5/2则y=(-1/2)x^2+(5/2)x-2(2)(2)假设存在,设P(x,y)则:当P在对称

如图,对称轴为直线x=7/2的抛物线经过点A(6,0)和点B(0,4)1.求抛物线解析式及顶

(1)由抛物线的对称轴是,可设解析式为.\x0d把A、B两点坐标代入上式,得解之,得故抛物线解析式为,顶点为\x0d(2)∵点在抛物线上,位于第四象限,且坐标适合,\x0d∴y<0,即-y0,-

如图已知抛物线y=x2+bx+c经过点(1,-5)和(-2,4) (1)求这条抛物线的解析式;

1.将点(1,-5)和(-2,4)带入抛物线y=x2+bx+c,则有-5=1+b+c和4=4-2b+c,求出b=-2,c=-4带入得出抛物线的解析式:y=x2-2x-42.设N点为(x1,y1),M点