如图角abc是圆o的内接等边三角形,圆o的半径od oe
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:26:55
①∵将△PBC绕C点顺时针旋转60°,∴∠PCD=60°,PC=CD,AD=PB,∠CAD=∠CBP,∵∠PBC+∠PAC=180°,∠DAC+∠PAC=180°,∴P,A,D在一条直线上,∴△PCD
三角形ABC是圆O的内接三角形,AC=BC,D为圆O中弧AB上一点,延长DA至点E,使CE=CD,1.求证AE=CD;2.若AC⊥BC,求证AD+BD=√2CD1.连接BD因为AC=BC所以角B=角C
(1)证明:作PH⊥CM于H,∵△ABC是等边三角形,∴∠APC=∠ABC=60°,∠BAC=∠BPC=60°,∵CM∥BP,∴∠BPC=∠PCM=60°,∴△PCM为等边三角形;(2)∵△ABC是等
∵△ABC是等边△,∴各个内角=60°,设△ABC的边长=a,则面积=﹙√3/4﹚a²,由同弧所对的圆周角相等得:∠BPA=∠CPA=60°,∴∠BPC=120°,由余弦定理得:①a
考点:等边三角形的性质;旋转的性质.分析:可通过旋转将△AOB旋转至△BDC,则可得△BOD是等边三角形,把OA,OB,OC放在一个三角形中,进而求出各个角的大小.如图所示,将△AOB旋转至△BDC,
你学过旋转了么?(1)把△ABC绕A点转60度,使B转动后与C重合,O点转动后的点叫O'.因为AO=AO',∠AOO'=60°,所以三角形AOO'是等边三角形.所以OO'=OA.转动后O'C=OB,所
连接CD.所以∠ABC=∠ADC(同弧所对的圆周角相等)∠ABC=CAD,所以∠ADC=CAD又因为AD是圆的直径,所以∠ACD=90°(直径对应的圆周角是直角)所以△ACD为等腰直角三角形,因为AD
分析:求线段的比,可以考虑用相似三角形对应边成比例来求;首先寻找相似三角形△AEC与△CBD,然后根据相关判定条件寻找解答即可.证明:连接EC,∴∠B=∠E.∵AE是⊙O的直径,∴∠ACE=90°.∵
∵⊿ABC与⊿COD都是等边三角形,∴∠ACB=∠OCD=60度,∴∠ACB-∠OCA=∠OCD-∠OCA,即∠BCO=∠ACD,又BC=AC,OC=DC,∴⊿BOC≌⊿ADC
证明:∵OE∥AC∴△BOE∽△BCA∴OB/BC=BE/AB∴BE=AB*OB/BC∵OB是半径,BC是直径∴BC=2OB∴BE=AB*OB/2OB=AB/2∴BE=AE又∵∠BAC是直径所对圆周角
作直径BD,连接DA、DC,于是有向量OB=-向量OD当H为△ABC的垂心时,∴CH⊥AB,AH⊥BC∵BD为直径∴DA⊥AB,DC⊥BC∴CH//AD,AH//CD故四边形AHCD是平行四边形∴向量
解∵∠BOC=120°∴∠BAC=60°(同弧所对的圆周角等于圆心角的一半)∵AB=AC∴△ABC为等边三角形∵BD是直径∴∠BAD=90°附:对于正△ABC,圆心O既是内心,又是外心∴BD平分∠AB
140度圆内相同的弧所对应的圆周角是相应的圆心角的一半
到三个顶点的距离相等的,就是内接三角形,你可以将三个顶点到对边中点的连线相交,就是这个外接圆的圆心.
是,因为△ABC是等边三角形,所以∠B=∠C=60°,因为OE‖AB,OF‖AC,所以∠OEF=∠B=60°,∠OFE=∠C=60°,所以△OEF是等边三角形
(1)如图①,△PDC为等边三角形.理由如下:∵△ABC为等边三角形∴AC=BC∵在⊙O中,∠PAC=∠PBC又∵AP=BD∴△APC≌△BDC∴PC=DC∵AP过圆心O,AB=AC,∠BAC=60°
1内接正24边形,内接正六边形圆心角为60度,对应AB弦,C点在AB劣弧内,BC对应正8边形的边,圆心角是45度,余下15度,360/15=24,即应是正24边形的边.2一个圆半径R=4,圆心距为3,
1内接正24边形,内接正六边形圆心角为60度,对应AB弦,C点在AB劣弧内,BC对应正8边形的边,圆心角是45度,余下15度,360/15=24,即应是正24边形的边再问:为什么剩下15度再答:60-
△ABC是等边直角,AB为直径,取中点(圆心o)连接OF,AB=2R因为△AEF是正三角形,所以∠EAF=∠AFB=60°连接BE,AB是直径,所以∠AEB=90°所以∠FEB=30°由相似得∠EAB
证明:连结AO并延长交圆O于点G,连结GC因为BE*AE=DE*EF,所以BE/EF=DE/AE,角AEF=角DEB所以三角形AEF相似于三角形DEB,所以角FAE=角BDE又DE平行于AC,所以角B