如果n阶矩阵A满足A^3-2A 3A-E=O,则A可逆,求A^-1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:26:20
因为A^2=A=AI,所以A(A-I)=0所以A或A-I的行列式等于0A的行列式等于0说明特征值是0A-I的行列式等于0说明特征值是1
证明:因为A^3-2A^2+3A-E=0所以A(A^2-2A+3E)=E所以A可逆且A^-1=A^2-2A+3E再问:能详细些吗?对于A^-1是怎么出来的再答:这是定理:若同阶方阵A,B满足AB=E,
两边同时减5i得A^2-2A-3i=-5i(a-3i)(a+i)=-5i(-1/5(a+i))(a-3i)=i所以a-3i的逆矩阵是-1/5(a+i)因为有逆矩阵所以可逆
:设a是A的特征值.则a^5-2a^4+5a^3-8a^2-9是A^5-2A^4+5A^3-8A^2-9E的特征值.而A^5-2A^4+5A^3-8A^2-9E=0,零矩阵的特征值只能是0所以a^5-
A^2-2A+2I=0A^2-3A+A-3I=-5IA(A-3I)+(A-3I)=-5I(A+I)(A-3I)=-5I[-1/5(A+I)](A-3I)=I因此-1/5(A+I)是A-3I的逆矩阵因此
因为2A(A-E)=A^3所以A^3-2A^2+2A=0所以A^2(A-E)-A(A-E)+A-E=-E即(A^2-A+E)(E-A)=E所以E-A可逆,且(E-A)^-1=A^2-A+E.
设a是A的特征值,则a^2-3a+2是A^2-3A+2E的特征值而A^2-3A+2E=0,零矩阵的特征值是0所以a^2-3a+2=0所以(a-1)(a-2)=0所以A的特征值是1或2.因为A^2-3A
证:设a是A的特征值.则a^5-2a^4+5a^3-8a^2-9是A^5-2A^4+5A^3-8A^2-9E的特征值.而A^5-2A^4+5A^3-8A^2-9E=0,零矩阵的特征值只能是0所以a^5
A+2A-3E=0,3A=3E,A=E.
可以改写等式得出逆矩阵.请采纳,谢谢!
对.A(A-2E)=-3E,A可逆,A^(-1)=-(A-2E)/3
证:设a是A的特征值.则a^5-2a^4+5a^3-8a^2-9是A^5-2A^4+5A^3-8A^2-9E的特征值.而A^5-2A^4+5A^3-8A^2-9E=0,零矩阵的特征值只能是0所以a^5
A^2+2A+3E=0A(A+2E)=-3E(A)^-1=-(A+2E)/3运算符号不对的话,自己修正.
因为A^2+2A+3I=0所以A(A+2I)=-3I所以A可逆,且A^-1=(-1/3)(A+2I).
刚看到因为A^2-3A+2E=0所以A(A-3E)=-2E所以A-3E可逆,且(A-3E)^-1=(-1/2)A.
因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).
A^2-3A+E=03A-A^2=E(3E-A)A==EA^(-1)=3E-A
设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-
这样处理:设λ是A的特征值则λ^2-λ是A^2-A的特征值由A^2-A=0,零矩阵的特征值只能是0所以λ^2-λ=0即λ(λ-1)=0所以A的特征值为0或1.