如果n阶矩阵A满足A^3-2A 3A-E=O,则A可逆,求A^-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:26:20
如果n阶矩阵A满足A^3-2A 3A-E=O,则A可逆,求A^-1
如果N阶矩阵A满足A^2=A,则称A是幂等矩阵.证明幂等矩阵的特征值只能是0或1

因为A^2=A=AI,所以A(A-I)=0所以A或A-I的行列式等于0A的行列式等于0说明特征值是0A-I的行列式等于0说明特征值是1

证明:如果n阶矩阵a满足a^3-2a^2+3a-e=0 则a可逆 求a^-1

证明:因为A^3-2A^2+3A-E=0所以A(A^2-2A+3E)=E所以A可逆且A^-1=A^2-2A+3E再问:能详细些吗?对于A^-1是怎么出来的再答:这是定理:若同阶方阵A,B满足AB=E,

设n阶矩阵A满足A^2-2A+2i=0 证明矩阵A-3I可逆,并求(A-3i )^-1

两边同时减5i得A^2-2A-3i=-5i(a-3i)(a+i)=-5i(-1/5(a+i))(a-3i)=i所以a-3i的逆矩阵是-1/5(a+i)因为有逆矩阵所以可逆

线性代数题:证明:如果n阶实对称矩阵A满足A^5-2A^4+5A^...

:设a是A的特征值.则a^5-2a^4+5a^3-8a^2-9是A^5-2A^4+5A^3-8A^2-9E的特征值.而A^5-2A^4+5A^3-8A^2-9E=0,零矩阵的特征值只能是0所以a^5-

设n阶矩阵A满足A^2-2A+2i=0 证明矩阵A-3I可逆,并求(A-3i )^-1

A^2-2A+2I=0A^2-3A+A-3I=-5IA(A-3I)+(A-3I)=-5I(A+I)(A-3I)=-5I[-1/5(A+I)](A-3I)=I因此-1/5(A+I)是A-3I的逆矩阵因此

已知N阶可逆矩阵A满足2A(A-E)=A^3,求(E-A)^(-1)

因为2A(A-E)=A^3所以A^3-2A^2+2A=0所以A^2(A-E)-A(A-E)+A-E=-E即(A^2-A+E)(E-A)=E所以E-A可逆,且(E-A)^-1=A^2-A+E.

设n阶矩阵A满足A^2-3A+2E=0,证明A可相似对角化.

设a是A的特征值,则a^2-3a+2是A^2-3A+2E的特征值而A^2-3A+2E=0,零矩阵的特征值是0所以a^2-3a+2=0所以(a-1)(a-2)=0所以A的特征值是1或2.因为A^2-3A

线性代数题:证明:如果n阶实对称矩阵A满足A∧5-2A∧4+5A∧3-8A∧2-9E=0,则A一定是正定矩阵.

证:设a是A的特征值.则a^5-2a^4+5a^3-8a^2-9是A^5-2A^4+5A^3-8A^2-9E的特征值.而A^5-2A^4+5A^3-8A^2-9E=0,零矩阵的特征值只能是0所以a^5

n阶矩阵A满足A^2+2A+3E 证明A+E可逆 并求逆

可以改写等式得出逆矩阵.请采纳,谢谢!

设N阶矩阵A满足A^2-2A+3E=0 ,则秩A=N

对.A(A-2E)=-3E,A可逆,A^(-1)=-(A-2E)/3

线性代数题:证明:如果n阶实对称矩阵A满足A^5-2A^4+5A^3-8A^2-9E=0,则A一定是正定矩阵

证:设a是A的特征值.则a^5-2a^4+5a^3-8a^2-9是A^5-2A^4+5A^3-8A^2-9E的特征值.而A^5-2A^4+5A^3-8A^2-9E=0,零矩阵的特征值只能是0所以a^5

线性代数:若n阶矩阵A满足方程A^2 2A 3E=0,则(A)^-1=?

A^2+2A+3E=0A(A+2E)=-3E(A)^-1=-(A+2E)/3运算符号不对的话,自己修正.

设n阶矩阵A满足A^2+2A+3I=0,则A的逆矩阵?

因为A^2+2A+3I=0所以A(A+2I)=-3I所以A可逆,且A^-1=(-1/3)(A+2I).

n阶矩阵A满足A²-3A+2E=0,-证明A-3E是可逆矩阵

刚看到因为A^2-3A+2E=0所以A(A-3E)=-2E所以A-3E可逆,且(A-3E)^-1=(-1/2)A.

已知n阶矩阵A满足矩阵方程A^2-2A-3E=0,且A-E可逆,求A-E的逆矩阵?

因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).

已知n阶方阵A满足 A^2-3A+E=0,则A的逆矩阵为多少?

A^2-3A+E=03A-A^2=E(3E-A)A==EA^(-1)=3E-A

设A为n阶实对称矩阵,且满足A^3-2A^2+4A-3E=O,证明A为正定矩阵

设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-

n阶矩阵A满足A^2=A,求A的特征值?

这样处理:设λ是A的特征值则λ^2-λ是A^2-A的特征值由A^2-A=0,零矩阵的特征值只能是0所以λ^2-λ=0即λ(λ-1)=0所以A的特征值为0或1.