1 n^0.5 -1 n级数收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:03:27
1 n^0.5 -1 n级数收敛
级数(1/b)^n收敛,a>b>0,证明级数1/(a^n-b^n)收敛

俺来回答一下,马上拍照再答:

级数收敛证明(-1)^n/n这个级数怎么证明收敛?

设an=1/n.∵(1)an=1/n>1/(n+1)=an+1,(2)an-->0(n-->∞),∴根据莱布尼茨判别法知,交错级数∑(-1)^n/n收敛.

级数sin n/(n+1)收敛还是发散,如果收敛,是绝对收敛还是条件收敛,为什么?

收敛,Dirichlet判别法.这是最典型的一个用Dirichlet判别法判别收敛的例子.sinn的部分和=[sin1/2(sin1+sin2+...+sinn)]/sin1/2(积化和差公式)=[c

设数列{nan}收敛,且级数∑an收敛,证明级数∑n(an-an-1)也收敛

先从1到N求和:∑n(an-an-1)=NaN-∑an-1这里求和都是从1开始到N再令N趋于无穷,前面的收敛,后面部分也收敛所以整体收敛

级数(-1)^n / n 为啥收敛 ?怎么证明?

交错级数,用莱布尼兹判敛法再问:莱布尼茨的的前提条件之一不是前项大于后项吗这里怎么满足。。。求教再答:那里面所说的是把(-1)^n去掉之后剩下的正项,在这里就是1/n

级数1/n+1是收敛的还是发散的?

如果仅仅是1/(n+1)的话,那它是收敛的.因为当n趋于无穷大时,n+1也是趋于无穷大.那么它的倒数,也就是1/(n+1)就趋于0.

级数1/(n+1)收敛还是发散?为什么?

发散,因为它和1/n等价,lim(1/n)/[1/(n+1)]=1(n趋近于∞时)所以他俩的敛散性一致又因为1/n发散,所以1/(n+1)也发散再问:�ȼۣ�������Ϊ���ǵ�n����һ���

级数(求和)1\n^x的收敛域为多少

讨论x-级数:1+1/2^x+1/3^x+...+1/n^x+.的敛散性,其中x为任意实数.当x>1时,将x-级数按一项,两项,四项,八项,.括在一起,得到:级数(1)1+(1/2^x+1/3^x)+

证明级数(-1)^n/n是收敛的

设部分和数列为Sn则S[2k]=Σ-1/[(2k)(2k-1)]收敛S[2k-1]=S[2k]-(-1)^n/n收敛从而Sn的奇数子列和偶数子列收敛到同一个值所以Sn收敛即原级数收敛

-1的n次方,的级数收敛吗,求证明

∑(-1)∧n这个级数是不收敛的,+1-1震荡显然不收敛再问:可是部分和有界啊,部分和要么是-1要么是1要么是0。。再答:这不叫有界啊再答:我刚看了一下,部分和有界判断的是正项级数,这是交错级数,不能

判断级数∑(n从1到∞)(-1)^n/根号(n(n+1))是否收敛 若收敛是条件收敛还是绝对收敛

条件收敛①|(-1)^n/√[n(n+1)]|=1/√[n(n+1)]>1/√[(n+1)(n+1)]=1/(n+1),但∑1/(n+1)发散,故不绝对收敛②1/√[n(n+1)]单调递减趋于0,且∑

级数1/2的根号n次方如何证明收敛

a[n+1]/a[n]={1/2^[(n+1)/2]}/[1/2^(n/2)]=1/2^(1/2)

有关级数收敛若级数∑an收敛,为什么级数∑an + a(n+1)也收敛?而∑a(2n-1) - a(2n)不一定收敛?

例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+

∑1/√n级数收敛吗?如何证明?

发散p级数,只要p≤1就发散这个当结论记,不需要什么证明真要证明的话,这样证明:利用lim(n->+∞)Sn=常数来证1/√n级数的和求不出的1/√n>1/n对于∑1/nSn=1+1/2+1/3+……

级数收敛设级数∑Un(n=1,2,…,∞)收敛,证明∑(-1)^n*Un/n不一定收敛,(-1)^n指-1的n次方.

只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/

判断级数∑(n=1)(-1)^n/(n+根号n)是绝对收敛,条件收敛还是发散

{an}是莱布尼茨交错级数,故收敛1/(n+根号n)>1/(n+n)=1/2n,因为{1/2n}发散,所以{│an│}也发散因此,{an}条件收敛

设数列{nan}收敛,级数∑n(an-an-1)也收敛,证明级数∑an收敛

按定义将∑n(an-an-1)展开,找到三个级数之间部分和的关系再答:再答:不用客气^_^