1 x(1 x^2)dx 广义积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:06:11
1 x(1 x^2)dx 广义积分
计算广义积分∫(1,2)dx/[x(x^2-1)^(1/2)]

令x=sect原式=∫(0,π/3)dt=π/3

广义积分∫ (正无穷,1) [arctanx/(1+x^2)^3]dx

做变量替换arctanx=t,原积分化为积分(pi/4到pi/2)(tcos^4tdt)=(倍角公式)1/4积分(pi/4到pi/2)(t(1+2cos2t+(1+cos4t)/2)dt)=再问:抽象

广义积分∫ (正无穷,1) (arctanx/1+x^2)dx

下限是1吗?∫arctanx/(1+x²)dx=∫arctanxd(arctanx)=(arctanx)²/2+Cx→+∞,arctanx→π/2所以原式=(π/2)²/

求广义积分∫1/(x+1)^2*dx,(+∞,0)

(+∞,0)?假设是(0,+∞)∫1/(x+1)^2*dx=∫1/(x+1)^2*d(x+1)=-1/(x+1)因为lim(x→+∞)[-(1/x+1)]=0所以原式=0-[-1/(0+1)]=1

广义积分∫ln(1-x^2)dx(0到1)

∫ln(1-x^2)dx=xln(1-x^2)-∫xdln(1-x^2)=xln(1-x^2)-∫x/(1-x^2)*(-2x)dx=xln(1-x^2)-2∫(-x^2)/(1-x^2)dx=xln

求广义积分∫(3,+∞)1/[(x-1)^4*√(x²-2x)]dx

∫dx/[(x-1)^4*√(x^2-2x)=∫d(x-1)/[(x-1)^4*√((x-1)^2-1)](x-1)=secusinu^2=1-1/(x-1)^2=(x^2-2x)/(x-1)^2si

求广义积分∫1/x²(x+1)dx 积分区间为【1,

1/x^2(x+1)=(Ax+B)/x^2+C/(x+1)=[(Ax+B)(x+1)+Cx^2]/x^2(x+1)=[Ax^2+Ax+Bx+B+Cx^2]/x^2(x+1)=[(A+C)x^2+(A+

求广义积分 ∫(-∞—0) 2x/(x^2+1)dx,

∫(-∞—0)2x/(x^2+1)dx=∫(-∞—0)1/(x^2+1)dx^2==∫(-∞—0)1/(x^2+1)d(x^2+1)=ln(x^2+1)|(-∞—0)=-∞求高手指点对否

广义积分∫ [1/(x^2+4x+5)]dx = .

∫[1/(x²+4x+5)]dx=∫1/[(x+2)²+1]d(x+2)+∫1/[(x+2)²+1]d(x+2)=arctan(x+2)|+arctan(x+2)|=π/

广义积分 ∫ e^x/1+e^2x dx=?(下限-∞,上限∞)

∫(-∞~∞)e^x/(1+e^2x)dx=∫(-∞~∞)1/(1+e^2x)d(e^x)=lim(x-->∞)arctan(e^x)-lim(x-->-∞)arctan(e^x)=π/2-0=π/2

广义积分∫(0,+∞) 1/(x^2+2X+3)dx为

∫(0-->+∞)1/(x²+2x+3)dx=∫(0-->+∞)1/(x²+2x+1+2)dx=∫(0-->+∞)1/((x+1)²+2)dx=(1/√2)*arctan

广义积分∫[0,1]x/根号(1-x^2)dx

∫[0,1]x/根号(1-x^2)dx=∫[0,1]1/(2根号(1-x^2))dx²=∫[0,1]-d(根号(1-x^2))=-根号(1-x^2))[0,1]=0-(-1)=1

广义积分0到+∞X/(1+X^2)dX

再问:X/(1十X^2)再答:哦再答:稍等再答:再问:再问:第6和第5再问:拜托,过程再问:在吗再问:你做错了再答:额再答:不可能再问:看我的截屏再问:那5和6呢?再问:怎么做??再问:求帮助再答:好

广义积分求值 I = ∫(x^2+2x+2)^(-1)dx

你把x^2+2x+2进行配方,得到(x+1)^2+1然后令tanA=x+1然后注意把广义积分的上下限进行调整,然后就可以轻松算出来了.

广义积分求值 I = ∫(x^2+2x+1)^(-1)dx

-1(x^2+2x+1)^(-1)=(1+x)^(-2)∫(x^2+2x+1)^(-1)dx=-1/(1+x)然后代入计算即可

求广义积分∫∞ 1/xln x dx

∫∞1/xlnxdx=∫∞1/lnxd(lnx)=ln(lnx)∣[e,+∞]=+∞

广义积分∫(0~+∞)dx/1+x^2 dx 怎么求?

∫(0~+∞)1/(1+x^2)dx=arctanx[0-->+∞]=π/2

广义积分x/(1+x^4)dx=

如下图,望采纳

广义积分 ∫ln(1-x^2)dx收敛于________(积分区域为0-1)

这个题我以前做过,请参见ln(1-x²)=-ln(1/(1-x²)),与你的题只差一个负号,所以你这题结果是:2ln2-2