将z (z 1)(z 2)在z=2处展开成泰勒级数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:04:58
将z (z 1)(z 2)在z=2处展开成泰勒级数
关于虚数复数的题目1.已知复数Z满足z+|z|=2+8i,求复数z2.|Z1|=5,|Z2|=3,|Z1+Z2|=6 求

1.设z=a+biz+|z|=a+bi+根号(a^2+b^2)=2+8i所以b=8a=-152.设z1=a+biz2=c+diz1+z2=(a+c)+(b+d)ia^2+b^2=25c^2+d^2=9

若f(z)=1-z的模,z1=2+3i,z2=2=i,则|f(z1+z2)|=

|f(z1+z2)|=|f(2+3i+2+i)|=|f(4+4i)|=|(|1-4-4i|)|=|(|-3-4i|)|=|√(3²+4²)|=5

zn={(1-i)/2}^n,Sn=|z2-z1|+|z3-z2|+...|z(n+1)-zn|,Sn=?

复数Zn=[(1-i)/2]^n.(n=1,2,3,...).∴|Z(n+1)-Zn|=|[(1-i)/2]^n|×|[(1-i)/2]-1|=|(1-i)/2|^n×|(1+i)/2|=[(√2)/

已知z1=1-2i,z2=3+4i,求满足z分之1=z1分之1+z2分之1的复数z

z1=1-2i,1/z1=1/(1-2i)=(1+2i)/5z2=3+4i,1/z2=1/(3+4i)=(3-4i)/251/z=1/z1+1/z2=(1+2i)/5+(3-4i)/25=(5+10i

已知z1=5+10i,z2=3-4i,1/z=1/z1+1/z2,求z.

1/z=(z1+z2)/(z1z2)z=(5+10i)(3-4i)/(5+10i+3-4i)=(15+40-20i+30i)/(8+6i)=(55-10i)(8-6i)/(8+6i)(8-6i)=5(

已知z1=1-2i,z2=3+4i,求满足1|z=1|z1+1|z2的复数z

1/(1-2i)+1/(3+4i)=(1+2i)/5+(3-4i)/25=(8+6i)/25所以z=25/(8+6i)=25(8-6i)/100=2-(3/2)i

设Z1,Z2是实系数一元二次方程的两个虚根,且丨z1丨=根号2,z1+z2=2. (1)求z1,z

解1由题知z1,z2为共轭复数又由z1+z2=2解得z1,z2的实部为1又由丨z1丨=根号2,知z1的虚部为±1故z1=1+i,z2=1-i或z1=1-i,z2=1+i2由z1+z1=2z1z2=2构

一道复数的题目设复数z1=1+2ai,z2=a-i,a∈R,集合A={z| |z-z1|≤根号2},B={z| |z-z

实际上画出A和B在复平面上的图像,可以发现就是圆盘的图像A圆心是(1,2a)半径根2B圆心是(a,-1)半径2根2A∩B为空集就是说两个圆不相交,即两距离圆心大于半径和列出方程根号((1-a)

已知Z1=2,Z2=2i,Z是一个模为2根号2的复数,|z-z1|=|z-z2|,求z

利用图像法.点z1在x轴上,点z2在y轴上,因为|z-z1|=|z-z2|,即z到z1的距离等于z到z2的距离,即z必在∠z1Oz2的角平分线上,所以z在一,三象限的角平分线上,即辐角主值为π/4或5

已知复数z1=1+3i,|z2/(z+2i)|=√2,z1*z2为纯虚数,求复数z2

设z2=x+yiz1*z2=(1+3i)(x+yi)=x-3y+(3x+y)i+为纯虚数,则x=3yz2=3y+yi|z2|=y√10|(z+2i)|=2√2|z2/(z+2i)|=y√10/(2√2

已知z1=1+2i,z2=2-i,1/z=z1+z2,

z1=1+2i,z2=2-i,z1+z2=1+2i+2-i=3+i1/z=3+iz=1/(3+i)=(3-i)/(3+i)(3-i)=1/10(3-i)=3/10-1/10i

已知复数z1=-2根号3-2i,z2=-1+(根号3)i,求:(1)计算z=z1/z2

(1)z1=-2√3-2iz2=-1+√3iz=z1/z2=(-2√3-2i)/(-1+√3i)上下同乘以(-1-√3i)得:z=(-2√3-2i)*(-1-√3i)/(1+3)=8i/4=2iz=2

已知复数z1=a+2i,z2=3-4i,且z

z1z2=a+2i3−4i=(a+2i)(3+4i)25=(3a−8)+(6+4a)i25,因为z1z2为纯虚数,所以3a-8=0,得a=83,且6+4×83≠0,所以a=83满足题意,故z1=83+

已知复数z1=(2x+1)+i,z2=y+(2-y)i 若z1=z2,且x属于R,y为纯虚数,求z

设y=biz2=bi+(2-bi)i=b+(2+b)iz1=z2(2x+1)+i=b+(2+b)i所以2x+1=b1=2+bb=-1x=-1z1=-1+iz2=z1=-1+i-------------

设f(z)=z(z属于C),z1=3+4i,z2=-2-i,则f(z1-z2)等于?

f(z1-z2)=z1-z2=(3+4i)-(-2-i)=3+4i+2+i=5+5i

复数的三角形式Z1=3-5i Z2=8-2i Z=Z2/Z1 求复数Z 并表示成三角形式

Z=Z2/Z1=(8-2i)/(3-5i)=[(3+5i)(8-2i)]/(3^2+5^2)=(1+i)=√2[cos(∏/2)+sin(∏/2)i].

若虚数z满足z1z2+2i(z1-z2)+4=0,且z1的模不等于2,则(z2-4i)的模是多少?

z1z2+2i(z1-z2)+4=0即(z1-2i)(z2+2i)=0,因为z1的模不等于2,所以z1-2i不等于0,所以z2+2i=0,z2-4i=-6i,所以(z2-4i)的模是6.