将函数f(x)=1 (X-1)展成x 2的幂级数,并写出可展区间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 08:08:32
因为f(x)=1x2+4x+3=1(x+1)(x+3)=12(1+x)−12(3+x)=14(1+x−12)−18(1+x−14),又因为11+x=∞n=0(−1)nxn,-1<x<1,故在−1<x<
f(x)=1/(x+2)(x-1)=1/3[1/(x-1)-1/(x+2)]=-1/3[1/(1-x)+0.5/(1+0.5x)]=-1/3[1+x+x^2+.+0.5(1-0.5x+0.5^2x^2
f(x)=1/(x^2+3x+2)=1/(x+1)-1/(x+2)=1/(x+1)-(1/2)/(1+x/2)=∑(n=0,+∞)(-x)^n-(1/2)∑(n=0,+∞)(-x/2)^n|x|
x>=0时f(x)=x^2-2x+1;x
f(x)=1/x=1/[1+(x-1)]=Σ(n从0到∞)(-1)^n*(x-1)^n收敛区间:|x-1|
1/(1-x^2)=1+x^2+x^4+...+x^2n+....(|x|
1/(x+1)=1/(3+x-2)=(1/3)/[1+(x-2)/3)]=(1/3)∑(0,+∞)(-1)^n[(x-2)/3)]^n|x-2|
有f(x)=1/(2+3x)=1/5·1/{1-[-3(x-1)/5]}又因为1/(1-x)=1+x+x^2+x^3+···+x^n+···(-1
f(x)=1/(x-2)(x-1)=1/(x-2)-1/(x-1)=1/2(1-x/2)+1/(1-x)=1/2∑(x/2)n+∑xn∑上面是无穷大,下面是n=0X范围为(-1,1)
由1/(1-x)=1+x+x^2+x^3+...|x|
令t=x-1则x=t+1f(x)=1/(1+2x)=1/(1+2t+2)=1/(2t+3)=1/3*1/(1+2t/3)=1/3*[1-2t/3+4t^2/9-8t^3/27+.]=1/3-2t/9+
就讲一下思路了.(1)首先把f(X)=1/x^2看成是g(x)=-1/x的导数,也就是f(x)=g'(x).(2)将g(x)展开成x+1的幂级数.g(x)=-1/x=1/(1-(x+1))这样就可以把
因为f(x)=13+(x−2)=1311+x−23,又因为11+x=∞n=0(−1)nxn,|x|<1,所以f(x)=∞n=0(−1)n(x−2)n3n+1,由|x-2|<3可得,其收敛域为-1<x<
为什么没有人回答呢,太简单了吗?根据等比数列公式,1/(1+2x)=1/(1-(-2x))=1+(-2x)+(-2x)^2+(-2x)^3+...+(-2x)^(n-1)+...,这是因为等比数列前n
分成负无穷到-1-1到11到正无穷分开讨论就行那个
2sinxcosx+2cos²x=sin(2x)+cos(2x)+1=2sin(2x+π/4)+12kπ-π/2
f(x)=1/(x-2)(x-3)=1/(x-3)-1/(x-2)=-1/(1-x/3)+1/(1-x/2)=-[1+x/3+x^2/3^2+...]+[1+x/2+x^2/2^2+...]=x(1/
令f(x)=x/(x²-x-2)=x/(x-2)(x+1)=a/(x-2)+b/(x+1)去分母:x=a(x+1)+b(x-2)即x=(a+b)x+a-2b对比系数:1=a+b,0=a-2b