1 根号n*Inn 1 n-1敛散性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:04:00
乘进去嘛,n就没了再答:做个分子有理化再答:再分子分母除以n再问:乘进去是(根号n²+n-2)-根号n²-n.然后咧?把∞带进去吗?再答:分子有理化啊
怎么会呢,分子分母同时有理化,得出的式子可求极限啊!=======当n趋于无穷大时lim[√(n+1)-√n]/[√(n+2)-√n]=lim[(n+1)-n][√(n+2)+√n]/{[(n+2)-
结论:发散.√(n+1)-√n=1/[√(n+1)+√n]>1/[√(n+3n)+√n]=(1/3)(1/√n)>=(1/3)(1/n)而∑(1/3)(1/n)=(1/3)∑(1/n)发散所以∑(n=
分子分母乘以(根号(n+1)+根号n)原式=根号n/(根号(n+1)+根号n)=1/(1+根号((n+1)/n))n趋向无穷时原式为1/2
用倒数法把题变成根号(N+1)-根号N分之一与根号N-根号(N-1)分之一比大小分母有理化就变成了根号(N+1)+根号N与根号N+根号(N-1)所以前者大于后者分子一定时分数大的分母小所以根号(N+1
级数(-1)^n(根号n+1-根号n)=级数(-1)^n/(√(n+1)+√n)由于1/(√(n+1)+√n))递减趋于0,由莱布尼兹交错级数判别法,级数收敛又1/(√(n+1)+√n))≥1/(2√
使用分子有理化的方法分子分母同时乘以它的共轭数(简单来讲一般就是把+、-号换一下)这一题里:根号n+1-根号n分子分母同乘以根号n+1+根号n就变成了1/(根号n+1+根号n)根号n-根号n-1分子分
先告诉你答案是2/3.我认为题目是根号的和除以n倍根号n,不然极限是0,没什么意义.详细解法如图,我花了好多时间做出来的.多给点分吧.
考虑其正项级数,对其分子进行放缩,利用比较判别法可知原级数收敛,具体解题步骤如下
像你说的用倒数法把题变成根号(N+1)-根号N分之一与根号N-根号(N-1)分之一比大小分母有理化就变成了根号(N+1)+根号N与根号N+根号(N-1)所以前者大于后者分子一定时分数大的分母小所以根号
使用分子有理化的方法分子分母同时乘以它的共轭数(简单来讲一般就是把+、-号换一下)这一题里:根号n+1-根号n分子分母同乘以根号n+1+根号n就变成了1/(根号n+1+根号n)根号n-根号n-1分子分
伪命题啊n=97右边=97!我看了你们的追问追答发现你算错了...大哥证明根号(n+1)-根号n大于根号(n+3)-根号(n+2)分子有理化之后(左边上下同乘根号(n+1)+根号n,右边上下同乘根号(
利用夹逼准则可以证明,因√[n+(-1)^n]>√(n-1)所以0
级数Σ√(n-1)/(n^2+n)^(1/4)是发散的.事实上,因 √(n-1)/(n^2+n)^(1/4)=√(1-1/n)/(1+1/n^2)^(1/4)→1≠0(n→∞),据级数收敛的必要
你指的是这个数列本身的收敛性还是级数的收敛性啊?(根号n+1-根号n)/(n+1)=1/(n+1)(根号n+1+根号n)1,所以右边收敛,原级数又是正项级数,所以级数收敛,数列本身也就收敛于0
/>您的采纳是我前进的动力~
lim{n->∞}√(n+2)[√(n+1)-√(n-1)]=lim{n->∞}√(n+2)[√(n+1)-√(n-1)][√(n+1)+√(n-1)]/[√(n+1)+√(n-1)]分子上用平方差公
结果是-1.√(n+1)-√n=1/[√(n+1)+√n]
分母有理化.分子分母同乘以(根号n+1减根号n)化简就得.
上下乘√(n²+2n)+√(n²-1)分子是平方差=n²+2n-n²+1=2n+1原式=lim(2n+1)/[√(n²+2n)+√(n²-1