已知 x2 y2=1,m2 n2=1, ,求 的最小值及相应的 的值.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:25:02
∵反比例函数y=-4/x的图像在第2、4象限,∴当x1<0时,y1>0当 0<x2<x3时,图象在第四象限,∴y随x的增大而增大,且y<0∴0〉y3>y2综合起来,有y2<y3<0<y1
xy/x+y=1/3x+y=3xyx2y2/x2+y2=1/5(xy)²/[(x+y)²-2xy]=1/5(xy)²/[(3xy)²-2xy]=1/5(xy)&
x2y2-20xy+x2+81=(xy-10)2+x2-19=0则xy-10=0且x2-19=0得x=+-根号19y=+-10/根号19对于像这种未知数个数多于方程类型的式子,如果能求解,只有一种情况
(1)4x2m+1y的系数是4,次数是2m+2;-5x2y2的系数是-5,次数是4;-31x5y的系数是-31,次数是6;(2)由(1)可得2m+2=8,解得m=3.
x3y+2x2y2+xy3=xy(x2+2xy+y2)=xy(x+y)2,∵x+y=5,∴(x+y)2=25,x2+y2+2xy=25,∵x2+y2=13,∴xy=6,∴xy(x+y)2=6×25=1
∵x+y=4,∴(x+y)2=16,∴x2+y2+2xy=16,而x2+y2=14,∴xy=1,∴x3y-2x2y2+xy3=xy(x2-2xy+y2)=14-2=12.
x3次方y-2x2y2+xy3=xy(x²-2xy+y²)=xy(x-y)²=3x3²=27如果本题有什么不明白可以追问,再问:=xy(x2-2xy+y2)=x
原式=x4+x3y+4x3y+x2y+4x2y2+4x2y2+xy2+4xy3+xy3+y4,=x3(x+y)+4x2y(x+y)+xy(x+y)+4xy2(x+y)+y3(x+y),=-x3-4x2
(2x4-4x3y-x2y2)-2(x4-2x3y-y3)+x2y2=2x4-4x3y-x2y2-2x4+4x3y+2y3+x2y2=2y3,因为化简的结果中不含x,所以原式的值与x值无关.
x2y2+4xy+4+x2-6x+9=0,(xy+2)2+(x-3)2=0,∵(xy+2)2≥0,(x-3)2≥0,∴xy+2=0,x-3=0,∴xy=-2,x=3.将x=3代入xy=-2中,解得y=
变形得:x2+2x+1+x2y2-2xy+1=0,∴(x+1)2+(xy-1)2=0,∴x+1=0xy−1=0,解得:x=−1y=−1,∴x+y=-2,故选B.
由x²+y²-4x-10y+29=0得(x-2)²+(y-5)²=0所以x=2y=5所以x²y²+2x^3*y²+x^4*y&su
原式=2x2y-2xy2-[-3x2y2+3x2y+3x2y2-3xy2]=2x2y-2xy2+3x2y2-3x2y-3x2y2+3xy2=2x2y-3x2y-2xy2+3xy2+3x2y2-3x2y
x+y=4,xy=2后者平方后二式相加再加后者平方
(x-y)2=x2-2xy+y2=9,当x2+y2=13时,13-2xy=9,解得xy=2.当xy=2,x2+y2=13时,x3y-8x2y2+xy3=xy(x2-8xy+y2)=2×(13-8×2)
(2X²-2y²)-3(X²y²+X²)+3(X²y²+y²)=2x²-2y²-3x²y&
∵x-y=l,xy=2,∴x3y-2x2y2+xy3=xy(x2-2xy+y2)=xy(x-y)2=2×1=2.
因为x²+4y²+x²y²-6xy+1=0(x²-4xy+4y²)+(x²y²-2xy+1)=0(x-2y)²