已知,三角形abc中有一点p,pa=3,pb=4,pc=5.求角apb

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:39:45
已知,三角形abc中有一点p,pa=3,pb=4,pc=5.求角apb
已知,在三角形ABC中,有一点P,连接BP、CP,证明:AB+AC>PB+PC

延长BP交AC于D∵AD+AB>BDCD+PD>CP∴AB+AD+CD+DP>BD+CP=BP+DP+CP∴AB+AD+CD>BP+CP即AB+AC>BP+CP

已知:△ABC中,∠C=90°,AB=13,AC=5.在三角形内有一点P,它到各边的距离都相等,求此距离.

距离为2.具体算法:在此直角三角形中,p点、顶点c与p垂直到ac、bc的点构成了一个正方形,设长为x,则在斜边上可得5-x+12-x=13即可得

一道数学探究题已知等边三角形abc,平面内有一点p,并且满足三角形pab,pbc,pac均为等腰三角形,问满足条件的p点

因为要使△PAB、△PBC,△PAC都是等腰三角形则P点到AB,AC,BC三条边的距离要相等,P点必在角A的平分线上,也必在角B的平分线上,也必在角C的平分线上,有一点P点在角A的平分线上,也必在角B

已知三角形ABC中,

这道题没有错,因为题中没有说是等边三角形,本题考察的知识点较多,环环相扣,解题过程如下:(1)延长AO交圆于E,则直径AO所对的

三角形ABC中,角B=90',两直角边AB=7,BC=24,三角形内有一点P到各边的距离相等,这个距离是?

直角三角形两直角边是7和24,则斜边AC=25,设这个距离是d,则:(1/2)[7+24+25]×d=(1/2)×7×24得:d=3即这个距离是3

在三角形ABC中,有一点O ,O到三角形三边的距离都是6厘米,已知三角形的周长是54厘米,求三角形的面积

将△ABC分成三个三角形:△AOB,△AOC,△BOC.设O到三角形三边的距离都是h三角形的面积=三个三角形的面积=AB*h*1/2+AC*h*1/2+CB*h*1/2=三角形周长*h*1/2=54*

在三角形abc中,∠b等于90度,ab等于5,bc等于12,ac等于13.三角形abc内是否有一点p到各边的距离相等?

存在,我们假设P向ABC三边做垂线垂足是Q,R,S分别在AB,BC,CA上.现在PQ=PR=PS.由勾股定理,我们可以计算得出AQ=AS,BQ=BR,CR=CS.那么结合PQ=PR=PS,出现了三组全

在三角形ABC中有一点P,使得角APB=角APC=角BPC,角ABC=60度,AP=8,CP=6,求BP

延长CP,在延长线上取点E、D,使PE=PB,ED=PA由∠APB=∠APC=∠BPC得∠APB=∠APC=∠BPC=120度所以∠EPB=60度,△PEB是正三角形,所以BP=PE=BE,∠PEB=

已知等边△ABC中有一点P,∠APC=110°,∠APB=120°,求以线段PA|,PB,PC为边构成的三角形的三个内角

三个内角的度数分别为:70.60.50温馨提示:把三角形APB绕B旋转60度(要注意旋转方向,使边BA于BC重合)

已知等边三角形abc内有一点p到其他三边的距离分别是3cm,4cm,5cm,求三角形abc的边厂.

设边长为Lcm,那么可以算出三角形面积为四分之根号三L^2又因为三角形面积=三角形abp的面积+三角形acp的面积+三角形bcp的面积=3L/2+4L/2+5L/2=6L平方厘米所以四分之根号三L^2

已知锐角△ABC中,AD⊥BC于D,H为垂心(三角形三条高线的交点);在AD上有一点P,且∠BPC为直角,求证PD

证明:因为AD⊥BC,∠BPC为直角所以△BDP∽△PCD所以BD:PD=PD:CD即PD²=BDxCD因为H为垂心所以CH⊥AB因为∠1+∠2=90°,∠3+∠4=90°,∠2=∠3&nb

已知一个三角形ABC中,角ACB等于90度,AC=BC,三角形内有一点P,点P到A的距离为1,点P到C的距离为2,点P到

将三角形CPB绕C顺时针旋转90度,P新位置Q则CP=CQ,PB=AQ,∠PCB=∠ACQ,所以∠PCB+∠ACP=∠QCA+∠ACP=90所以:三角形QCP为等腰直角,∠CPQ=45QP=√2CP=

已知三角形ABC的边BC上有一点D,BD

已知:△ABC边BC上一点D(BD<CD)求作:过点D直线把△ABC分成面积相等的两部分作法:1、连结AD;  2、过点B作BE∥DA交CA延长线于点E; &nbs

已知三角形ABC中.

如图,∠DBC=(180°-x°)/2=90°-x°/2. ∠DBA=90°+x°/2.同理.∠DCA=90°+y°/2.  x+y+50=180.  

已知等边三角形ABC的高为4,在这个三角形所在的平面内有一点P,若点P到AB的距离是1,

本题是在一道经典习题基础上衍化出来的,那道习题是说等边三角形内的任意一点到等边三角形三边的距离之和为定值,定值等于已知等边三角形的高.如图①,P是⊿ABC内部的一点,PD⊥BC,PE⊥AC,PF⊥AB

已知三角形ABC中

因为AB,AC的垂直那个平分线分别交BC与点E,F所以AE=BE,AF=CF(线段垂直平分线上的点到线段的两个端点的距离相等)又因为角BAC=140所以角B加角C等于40所以角BAE加上角CAF等于4

已知等边三角形ABC内有一点p到其他三边的距离分别是3,4,5,求三角形ABC的边长

利用等边三角形面积ah1/2+ah2/2+ah3/2=ah/2可得一个有用的结论:等边三角形内任一点到三边距离和等于该等边三角形的高,即h1+h2+h3=h所以等边△ABC内有一点P到三边距离分别是3

三角形ABC中,已知

tanA+tanB+√3(根号3)=√3tanA*tanB把√3(根号3)移到右边去,提出-√3(根号3)得到tanA+tanB=-√3(根号3)(1-tanA*tanB)把(1-tanA*tanB)