已知,在△ABC中,AD平分∠ACF,AD,CD相交于点D,如图,若∠B=90°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:55:18
∵EF垂直平分AD∴EA=ED∴∠EAD=∠EDA∵AD平分角BAC,即∠BAD=∠CAD又∵∠EDA=∠B+∠BAD;∠EAD=∠CAE+∠CAD∴∠B=∠EDA-∠BAD=∠EAD-∠CAD=∠C
证明:∵∠DBC=∠DCB∴DB=DC∵AB=AC,AD=AD∴△ABD≌△ACD(SSS)∴∠BAD=∠CAD即AD平分∠BAC
证明:延长CE交AB于F,∵CE⊥AD,∴∠AEC=∠AEF,∵AD平分∠BAC,∴∠FAE=∠CAE,在△FAE和△CAE中∵∠FAE=∠CAEAE=AE∠AEF=∠AEC,∴△FAE≌△CAE(A
因为角EAD=角CAD,(AD平分角BAC)又:角EDA=角DAC,(DE//AC)所以,角EDA=角DAE又:EF垂直于AD所以,EF是AD的垂直平分线,∴FD=FA,(垂直平分线上的点到线段两个端
EF垂直平分AD所以AE=ED所以在三角形EAD中,∠EDA=∠EAD又∠EAD=∠EAC+∠CAD,∠EDC=∠B+∠DAB所以∠EAC+∠CAD=∠B+∠DAB又AD平分∠BAC所以∠DAB=∠C
因为AD平分∠BAC,所以∠BAD∠CAD又因为AD=ADAB=AC所以三角形ABD与三角形ACD全等所以∠ADB=∠ADC∠ADB+∠ADC=180度所以∠ADB=∠ADC=90度AD⊥BC
证明:因为AB=AC所以∠abc=∠acb因为∠DBC=∠DCB所以.bd=cd在三角形abd和三角形acd中AB=ACbd=cdad=ad所以全等∠bad=∠cadAD平分∠BAC
证明:1、∵∠BAC=180-(∠B+∠ACB),AD平分∠BAC∴∠1=∠BAC/2=90-(∠B+∠ACB)/2∴∠ADC=∠1+∠B=90-(∠B+∠ACB)/2+∠B=90-(∠ACB-∠B)
证明:作DE⊥AB于E,DF⊥AC于F;并设△ABC的边BC上的高为ha;∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F;∴DE=DF∴S△ABD∶S△ACD=(½AB·DE)∶(
证明:连接AE∵E在AD的垂直平分线上∴AE=DE∴∠EAD=∠EDA∵∠EAD=∠EAC+∠CAD∠EDA=∠B+∠BAD又∵∠BAD=∠CAD∴∠CAE=∠B∵∠AEC=∠BEA∴△ACE∽△EB
作EF平行于AB、CD交BC与点F∴∠ABE=∠BEF=∠EBF,∠DCE=∠CEF=∠ECF∴EF=BF=CF∴F为BC中点又∵EF∥AB∥CD∴EF为梯形ABCD中位线∴E为AD中点
证明:∵AD平分∠EAC,∴∠EAD=12∠EAC.又∵∠B=∠C,∠EAC=∠B+∠C,∴∠B=12∠EAC.∴∠EAD=∠B.所以AD∥BC.
证明:因为DE//BC所以∠EDC=∠DCF因为∠EDC=∠FDC,所以∠DCF=∠FDC所以DF=FC因为AD=AC,所以△ADF≌△ACF(边边边)所以∠DAF=∠CAF所以AF是等腰三角形ADC
由EF垂直平分AD得fa=fd所以,∠fad=∠fda.∠fda=∠bad+∠abd[外角定理]AD平分∠BAC得∠bad=∠dac所以∠bad+∠abd=∠dac+∠cad所以
∵AB=AC,AD平分∠BAC,∴BD=DC,AD⊥BC,即BC=2CD,∵AF=2CD,∴AF=BC,∵CE⊥AB,AD⊥BC,∴∠AEF=∠BEC=∠ADC=90°,∵∠AFE=∠DFC,∠AEF
设AB沿AD折叠点B落在AC上,这一点设为E,设BD=X,则AD=8-X,很容易证明:DE=BD=X,AE=AB=6,则由直角三角形的定理可知:AC=10=AE+CE则CE=4那么CE^2=16=CD
(1)∠BAC=180-∠B-∠C=180-40-60=80度∠BAE=90-∠B=90-40=50度∠BAD=1/2∠BAC=1/2×80=40度∠DAE=∠BAE-∠BAD=50-40=10度(2
BD=BC=>∠DBC=∠DCB∠1=∠2=>∠ABC=∠ACB=>AB=AC∠DBC=∠DCB=>△ABD≌△ACDBD=CD=>∠BAD=∠CAD=>AD平分∠BAC
EF垂直平分AD则AE=DE∠EAD=∠ADE因∠EAD=∠EAC+∠CAD,∠ADE=∠B+∠BAD且∠CAD=∠BAD故∠EAC=∠B
证明:如图,在BC上截取BE=BA,延长BD到F使BF=BC,连接DE、CF.又∵∠1=∠2,BD是公共边,BE=BA,∴△ABD≌△EBD∴∠DEB=∠A=100°,则得∠DEC=80°∵AB=AC