已知,如图o为正方形abcd的中点,be平方∠dbc

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 05:03:09
已知,如图o为正方形abcd的中点,be平方∠dbc
如图,已知在⊙O中,直径MN=10,四边形ABCD是正方形,并且∠POM=45°,则AB的长为______.

∵∠POM=45°,∠DCO=90°,∴∠DOC=∠CDO=45°,∴△CDO为等腰直角三角形,∴CO=CD.连接OA,则△OAB是直角三角形,∵四边形ABCD是正方形,∴AB=BC=CD=CO,BO

如图,已知正方形ABCD的面积为64,△ABE是等边三角形,且点E在正方形ABCD内.

正方形ABCD的面积为64∴边长=8以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP&

如图所示,已知正方形ABCD的中心为O,用纸片剪一个大小与正方形ABCD相等的正方形 图见

过H向CD和BC作垂线分别垂直于M、N,设HG与CD交与点P,HE与BC交与点Q然后证△HNQ≌△HMP(AAS)所以四边形HQCP的面积等于正方形HNCM的面积恒等于1/4正方形ABCD的面积

如图,以圆O的弦AB为边向圆外作正方形ABCD.

1.OA=OB,AD=BC,∠OBC=90°±∠OBA=90°±∠OAB=∠OAD所以△OAD≌△OBC,OD=OC又ON=OM,∠OMD=∠ONC=90°,△OMD≌△ONCDM=CN2.设OG⊥A

如图,两个边长都为1的正方形,正方形EFGO的顶点O是正方形ABCD的中心

1利用割补法,两个正方形重叠部分的面积为12、方法相同,面积是1

已知:如图,正方形abcd的对角线ac、bd相交于点o;正方形abcd的顶点

简单因为OBC和OCD为等腰三角形E为BC中点所以角OEC=90所以角OFC=360-270=90因为OCD与等腰三角形三线合一,F为CD中点

如图1,已知以点O为对称中心的正方形ABCD中,AB=2,以O为顶点作正方形OEFG和正方形ABCD全等,正方形OEFG

(1)连结OB,OC.易知OB=OC,∠BOC=90°,∠OBM=∠OCN=45°而∠EOG=90°∴∠BOM=∠BOC-∠EOC=∠EOG-∠EOC=∠CON∴△OBM≌△OCN(ASA)∴BM=C

已知 如图 正方形ABCD内接于圆O EF分别为DA DC中点 过EF作弦MN 若圆O的半径为12求

如图,EF是⊿ACD的中位线,OP=OD/2=6. MN=2PM=2√(12²-6²)=12√3.PB=18.MB=NB=√[18²+(

已知 如图 正方形ABCD内接于圆O EF分别为DA DC中点 过EF作弦MN 若圆O的半径为12

连结OE、OF可得四边形OEDF为正方形,连结OD交EF于G,则OG=1/2OD=6.连结OM,在Rt△OGM中,OM=12,OG=6,由勾股定理得MG=6倍根号下3,再由垂径定理可求得MN=2MG=

如图,正方形ABCD和正方形OEFG的边长均为4,O是正方形ABCD的旋转对称中心,则图中阴影部分的

当OE垂直AB或OE过B点时,易知阴影部分的面积=1/4a².作为一般情况,因OE与OG的移动情况完全相同,必有OH=OK,HB=KC,又OB=OC,所以△OHB≌△OKC,故二者面积相等.

如图,1,已知正方形ABCD内一点O,OD=1,OA=2,O

解题思路:根据旋转性质解题解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/read

已知如图,O是正方形ABCD对角线上一点,以点O为圆心,OA长为半径的圆O与BC相切与点M,与

∵BC、CD是切线,∴∠ONC=∠ONC=90°,∵ABCD是正方形,∴∠BCD=90°,∴四边形OMCN是矩形,又OM=ON,∴矩形OMCN是正方形,设圆半径为R,OA=OM=CM=R,∴OC=√2

已知 如图 o为正方形abcd的中心 be平分∠dbc,交dc于点e,延长bc到点f,使cf=ce,连结

△DGE∽△BGDDG²=GE*GB△BCE≌△DCFBE=DFBG⊥DFGE*BE=GE*DF=DE*CF=DE*CE设BC=a,BF=BD=√2a,CE=(√2-1)a,DE=(2-√2

如图,正方形ABCD的边长为4,正方形OEFG的边长为6,O是正方形ABCD的对角线交点,则图中阴影部分面积为4

晕可以将oc连接,看不是分割成两部分了吗?由于o是正方形ABCD的对角线交点,设oe交bc于h,og交cd于j,obh等于ocj,那么图中阴影部等于三角形obc(即正方形ABCD的4分之一)啊懂了吧?

如图,已知正方形ABCD的边长为1.若以A为圆心,1为半径作圆,在扇形ABD内作⊙o与AD、

过⊙o圆心作AB、AD垂线设⊙o的半径为x则x^2+x^2=(1-x)^2x^2+2x-1=0x=-1+根号2⊙o的周长=2π*(根号2-1)

如图,已知点O是正方形ABCD的重心

这题只要证明N为AB中点,就可得出那2个结论可以先设MC=a,DC=2a,MD=根号5a我用:√5a来表示令NC与MD交点为P,则CP=2√5a/55分之2倍根号5可求出MP=√5a/5然后ΔMPC相

如图,点O是正方形ABCD的对称中心,

解对称理由如下连接AC,∵O是正方形ABCD的对称中心∴OA=OC,AB∥CD∴∠OAH=∠OCM∵∠AOH=∠COM∴△AOH≌△COM(ASA)∴OH=OM∴△AO

如图已知正方形OEFG的顶点O放在正方形ABCD的中心O处,若正方形OEFG绕O点旋转.

1.连接OB、OC,则OB=OC,角BOE=90度-角EOC=角GOC,OE=OG,三角形BOE和COG全等,BE=CG.2.在旋转过程中四边形OMCN的面积不发生变化.面积=1/4*S正方形ABCD

已知,如图O是正方形ABCD的中心,

(3)作EH垂直BD于点H,因为BE是角DBC的平分线,角BCD=90,所以,EH=CE,BH=BC.由(1)、(2)可知,BE=DF=2DG=2根号2.设AB=X,CE=Y,则DH=BD-BH=X(

如图,已知正方形ABCD的边长是4,对角线AC、BD相交于点O,另一个边长也为4的正方形OEFG,两个正方形重

不变作OP⊥BC,作OQ⊥CD,证得△OPM≌△OQNS四边形OMCN=S△OQN+S四边形OMCQ=S△OPM+S四边形OMCQ=S正方形OPCQ=1/4S正方形ABCD=1/4*4*4=4