已知:三角形ABC中,点D,E分别在AB,AC上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:19:38
连DE,则△AED∽△ACB,AE/AC=DE/BC延长FC交圆于G,则CG=CF=2,BE^2=BF*BG=1*5=5BE=√5AE=AB-BE=√(AC^2+BC^2)-BE=3√5-√5=2√5
显然:S△ADE:S△AFG:S△ABC=1:2:3,△ADE∽△AFG∽△ABC.由“相似三角形的面积之比等于其对应边平方之比”性质知:DE²:FG²:BC²=1:2:
内心是三角形三条角平分线的交点,所以AD,BE分别是角BAC和ABC的角平分线;角BAD=DAC,则弧BD=CD,即弦BD=CD;角DBC=DAC(同弧圆周角)角DBE=DBC+CBE=DAC+CBE
分析:由DE∥BC,可得△ADE∽△ABC,又由△ADE的面积与四边形BCED的面积相等,根据相似三角形的面积比等于相似比的平方,即可求得AD/AB的值.\x0d∵DE∥BC,\x0d∵△ADE的面积
条件错了吧,应该是BA*BC=BD*BE,∴BE平分∠ABC,∴∠ABE=∠EBC∵BA*BC=BD*BE∴BA/BD=BE/BA∴△ABD∽△EBC∴∠BCE=∠BDA又∵∠BEC=∠AED∴△AD
角dac=ebc角adb=adcad=bd所以fbd和adc全等所以fd=dcaf+dc=af+fd=ad=bd
因为AD垂直BC,所以,角ABD=角ADC=90度,角C+角CAD=90度.因为BE垂直AC,所以,角C+角CBE=90度,所以,角CAD=角CBE.又因为BD=AD,所以,三角形FBD全等于三角形C
∵三角形ABC中,已知点D,E,F分别为AB,AC,BC的中点,S⊿ABC=4厘米²,∴S⊿DEF=S⊿ABC÷4=1
(1)DE平行于BC,三角形ABC相似于三角形ADE由于△ADE和△BDE底分别为AD和DB,两三角形高相同,所以面积比等于两个底之比即S△ADE/S△BDE=AD/DB.设三角形BDE的面积为x.可
证明:∵AH⊥BC,E为AC中点∴EH=1/2AC∵D为BC中点.E为AB中点∴DF=1/2AC∴DF=EH同理HF=DE∵FE=FE∴△EFH≌△FED
∵∠A=∠ADM=30°,∴MA=MD.又MG⊥AD于点G,中的结论成立.如图9,在Rt△AMG中,∠A=30三角形DGM和NHD相似所以DH=(根号3)MGAG=(
因为E是内心,所以EA、EB分别为∠A和∠B的角平分线,即∠BAD=∠DAC=∠A/2,∠ABE=∠EBC=∠B/2所以BD=CD因为∠DAC和∠DBC对应同一段外接圆弧CD,所以∠DBC=∠DAC=
1.证明:∵∠ACB=90°∴AC⊥BC∵BF⊥CE∴∠ACE=∠CBG∵∠AEC=∠ADC+∠DCE=90°+∠DCE,∠BGC=∠GFC+∠DCE=90°+∠DCE∴∠AEC=∠BGC∵AC=BC
角2=角ABC+角BAC角BAC=角1+角AEF所以角2>角BAC>角1
证:∵∠ADB是△BCD的外角∴∠ADB>∠BCD∵∠BCD是钝角△CDE的外角∴∠BCD>∠DCE,∠DCE>∠CDE∴∠BCD>∠CDE∴∠ADB>∠CDE还有证明ADB+BDC=180DCE+B
S△BEC=S△ABC/2=2S△BEF=S△BEC/2=1再问:请写出具体过程,谢谢再答:作EG⊥BC于G,AH⊥BC于H,BL⊥CF延长线于L∵AD=2DE,EG∥AH∴AH=2EG(平行线间性质
方法一:∵D、E是AB、BC的二等份点∴DE是三角形BAC的中位线,DE∥AC且DE=1/2AC做BM⊥AC于M,交DE于N,则BN=MN=1/2BMS△DEF=1/2DE*MN=1/2*1/2AC*
∠B的同位角是∠ADE,同旁内角是∠ACB,∠B+∠BDE的度数是180度再问:同位角和同旁内角都只有一对吗还有后面一题的过程谢谢!!表示超急再答:恩,同旁内角因为是关于相连的3条线的,有两对,∠AD
因为ADE相似ABC,所以AD比AB等于AE比AC(相似比)又因为AEF相似ADC,所以AE比AC等于AD比AF,则AD比AB等于AD比AF.化简得,AD方等于AF乘AB再问:??