已知:定义域为R的函数f(x)=ax-x^3在区间(0,2 根号2)内是增

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 11:57:52
已知:定义域为R的函数f(x)=ax-x^3在区间(0,2 根号2)内是增
已知定义域为R的函数f(x+y)=f(x)*f(y)

(1)取y=0,于是f(x)=f(x)*f(0),对任意的x属于R,我们知道f(0)=1可以取这样的f(x)=e^x,顺便可以验证一下正确性,f(0)=1(2)①当x0,取y=-x,于是f(x-x)=

已知定义域为R上的减函数,则满足f(1/x的绝对值)

因为是减函数,由f(1/x的绝对值)

已知定义域为R的函数y=f(x)满足以下三个条件:

已知定义域为R的函数y=f(x)满足以下三个条件:1)对于任意的x∈R都有f(x+4)=f(x)2)对于0≤x1<x2≤2,都有f(x1)<f(x2)3)函数y=f(x+2)的图像关于y轴对称则f(6

已知定义域为R的函数f(x)满足

(1)令x=y=0,则由性质一有f(0-0)+f(0+0)=2f(0)f(0),即2f(0)=2f(0)^2因为f(0)不等于0,所以f(0)=1;再令x=0,则对任意的实数y都有f(0-y)+f(0

已知定义域为R的函数f(x)满足f=f(X)-x^2+x

1)将x=2及f(2)=3代入已知条件有:f[f(2)-4+2]=3-4+2即f(1)=1.令x=0,则f[f(0)-0+0]=f(0)-0+0=f(0)=a,即f[f(0)]=f(a)=a(2)对任

已知函数f(x)是定义域为R的奇函数,

(1)∵函数f(x)是定义域为R的奇函数∴f(0)=0(2)∵函数f(x)的图象关于直线x=1对称∴f(x+1)=f(x-1)∴f(x+4)=f[(x+3)-1]=f(x+2)=f[(X+1)-1]=

已知函数f(x)的定义域为R,则下列命题中:

∵f(x)是偶函数,∴函数f(x)的图象关于y轴(x=0)对称将函数f(x)的图象向左平移两个单位后得到f(x+2)的图象故f(x+2)的图象关于x=-2对称,①不正确;反之当f(x+2)是偶函数时,

已知偶函数f(x)的定义域为R,且在(-∞,0)上是增函数

楼上错了哦!首先f(-3/4)=f(3/4);依题:函数在(0,+∞)上为减函数;由f(a^2-a+1)=f[(a-1/2)^2+3/4]知道a∈R的时候x的最小值为3/4;故:f(-3/4)>=f(

设函数f(x)的定义域为R,当x

(1)令y=0得f(x+0)=f(x)*f(0)即f(x)=f(x)*f(0)因f(x)不恒为零(x

已知定义域为R的函数f(x)=sin(2x+a)(0

解题思路:第1问利用奇函数的定义来解答;第2问利用函数图象的平移的方法来解答解题过程:

已知定义域为R+的函数f(x)满足:①x>1时,f(x)

给分太少啊,浪费不少脑细胞.(1)对于任意x1,x2∈R+,设x11,由③得f(x2)=f(t·x1)=f(t)+f(x1),由①知f(t)=f(4).由(1)得:5x-x^2=0x>=4或x0且x

已知定义域为R的偶函数f(x)在(-∞,0]上为增函数

偶函数f(x)在(-∞,0]上为增函数那么在正实数范围内就是减函数,f(1/2)=0f(x)1/2f(4ⁿ)1/22^2n>2^(-1)2n>-1n>-0.5f(4ⁿ)

已知函数f(x)是定义域为R的奇函数,当x

因为函数f(x)是定义域为R的奇函数,所以f(-x)=-f(x),当x大于0时f(x)=-x²+x+2,x=0时f(x)=02.负无穷到-0.5;0.5到正无穷为减区间;(-0.5,0)(0

已知函数f(x)的定义域为R,且满足f(x+2)=-f(x),证明它是周期函数!

f(x+2)=-f(x)则f(x)=-f(x+2)=f(x+4)所以是周期函数.周期是4

已知定义域为R的函数f(x)满足f(2+x)= f(2-x).

定义域为R的函数f(x)满足f(2+x)=f(2-x)就是说它的对称轴是x=2一个根为0所以另一个根为4还剩一个根只能为2若f(x)又是偶函数以及f(2+x)=f(2-x)f(x+4)=f(-x)=f

数学,拜托了)已知定义域为R的函数f(x)满足f(-x)=-f(x+4)

定义域在R的函数f(-x)=-f(x+4),所以函数f(x)关于(2,0)对称当x>=2时,f(x)单调递增,则x2时,f(x)>0,当x