已知a ,b,c>0,所以a² b² c² ab 2bc的最小值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:32:31
已知a ,b,c>0,所以a² b² c² ab 2bc的最小值为
已知,abc>0,求证,b+c/a+c+a/b+a+b/c大于等于6

(b+c)/a+(c+a)/b+(a+b)/c=b/a+c/a+c/b+a/b+a/c+b/c=(b/a+a/b)+(c/a+c/a)+(c/b+b/c)>=2+2+2>=6

已知a+b+c=0求证:(a-b/c+b-c/a+c-a/b)(c/a-b+a/b-c+b/c-a)=9

(a-b)/c+(b-c)/a+(c-a)/b=(ab(a-b)+bc(b-c)+ca(c-a))/(abc)=(ab(a-b)+c(b²-a²)+c²(a-b))/(a

已知|a|a+|b|b+|c|c

由已知可得出:a,b,c中有两个负数、一个正数,①若a<0,b<0,c>0,则ab>0,bc<0,ca<0,abc>0,∴原式=1-1-1+1=0;②若a<0,b>0,c<0,则ab<0,bc<0,c

已知a>b>c>0,求证a^(2a)b^(2b)c^(2c)>a^(b+c)b^(a+c)c^(a+b)

作商法[a^(2a)b^(2b)c^(2c)]/〔a^(b+c)b^(a+c)c^(a+b)〕=a^(a-b)*a^(a-c)*b^(b-c)*b^(b-a)*c^(c-b)*c^(c-a)=(a/b

已知a,b,c为三个非零实数,且a+b+c=0求证:[(a-b)/c+(b-c)/a+(c-a)/b][c/(a-b)+

因为a+b+c=0,所以c=-a-b,所以(a-b)/c+(b-c)/a+(c-a)/b=(a-b)/(-a-b)+(b+a+b)/a+(-a-b-a)/b=(b-a)/(b+a)+2b/a-2a/b

已知a+b+c=0,求证[(a-b)/c+(b-c)/a+(c-a)/b)][c/(a-b)+a/(b-c)+b/(c-

c=-a-b代入化简即可(a-b)/c+(b-c)/a+(c-a)/b=[(a-b)ab+(b-c)bc+(c-a)ca]/(abc)=[(a^2b-ab^2)+(b^2c-bc^2)+(c^2a-c

已知a,b,c>0,求证a平方/b+b平方/c+c平方/a>=a+b+c

a²/b+b>=2根号(a²/b*b)=2a同理b²/c+c>=2bc²/a+a>=2c相加a²/b+b²/c+c²/a+a+b+

已知a,b,c(a

因为a,b,c成等差数列,且a

已知非零实数a、b、c满足a+b+c=0 求[(a-b)/c+(b-c)/a+(c-a)/b][c/(a-b)+a/(b

∵a+b+c=0,所以c=-a-b,∴(a-b)/c+(b-c)/a+(c-a)/b=(a-b)/(-a-b)+(b+a+b)/a+(-a-b-a)/b=(b-a)/(b+a)+2b/a-2a/b,通

已知a+b+c=0,求代数式(a+b)(b+c)(c+a)

已知:a+b+c=0所以:a+b=-c;a+c=-b;b+c=-a;求代数式:(a+b)(b+c)(c+a)用代入法=(-c)(-a)(-b)=-abc

已知a+b+c=0,求a(1b

原式=ab+ac+bc+ba+ca+cb=b+ca+a+cb+a+bc,由a+b+c=0,得到b+c=-a,a+c=-b,a+b=-c,则原式=-1-1-1=-3.

已知a《b《0《c,化简|a-b|+|a+b|-|c-a|+2|c-b|.

a≤b≤0≤cb-a≥0a-b≤0a+b≤0c-a≥0c-b≥0∴|a-b|+|a+b|-|c-a|+2|c-b|=b-a-a-b-c+a+2c-2b=-2b-a+c

已知向量a,b,c满足|a|=2 a/|a|+b/|b|=(a+b)/|a+b|,(a-c)*(b-c)=0,则|c|的

sqrt(3)-1≤|c|≤sqrt(3)+1a/|a|+b/|b|=(a+b)/|a+b|,a/|a|、b/|b|、(a+b)/|a+b|分别表示a、b、a+b的单位向量故a和b的夹角为2π/3,且

已知轴,化简.数轴:c b 0 a由于没法上传图片所以麻烦各位了,1.|a+b|-|c|+|b+c|2.√b²

【参考答案】1、la+bl-lcl+lb+cl=a+b-(-c)+(-b-c)=a+b+c-b-c=a2、√b²-|b+c|+|a|+√(a-c)²=lbl-lb+cl+lal+l

已知a>b>c,求证1/(a-b)+1/(b-c)+1/(c-a)>0

方法1要证1/(a-b)+1/(b-c)+1/(c-a)>0只需证1/(a-b)+1/(b-c)>-1/(c-a)只需证1/(a-b)+1/(b-c)>1/(a-c)因为a>b>c,所以(a-b)>0

已知a>b>c>0求证b/a-b>b/a-c>c/a-c

这是初二的不等式吧.高二的证明应该都带基本不等式

已知a/b=b/c=c/a abc≠0 求a+b+c/a+b-c.

由a/b=b/c=c/a,abc≠0=>a^2=bc,b^2=ac,c^2=ab=>(a^2/b^2)=bc/ac=b/a=>a^3=b^3=>a=b同理b=c,a=c;故a=b=c.楼主的思路是对的

已知a>b>0,c

证明:m/(a-c)-m/(b-d)=m[1/(a-c)-1/(b-d)]=m[(b-d-a+c)/(a-c)(b-d)]=m[(b-a+c-d)/(a-c)(b-d)]∵a>b>0,c