已知a,b,c三点均在圆o上,且△abc是等边三角形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:16:51
证明:1、∵PA、PB切圆O于A、B∴PA=PB∵DE切圆O于C∴AD=CD,BE=CE∴DE=AD+BE∴△ADE的周长=PD+DE+PE=PD+AD+BE+PE=PA+PB=2PA∴△ADE的周长
连接OP,则OP⊥AB,|OP|²+|BP|²=r²由于角ACB=90度,P是AB中点,所以|PC|=|AB|/2=|BP|所以|PC|²+|OP|²
矩形的对角线相交于一点O,根据矩形特点,有OA=OB=OC=OD,那么,根据圆形的特征,四条线段共点于O,这样四条线段均为以O为圆心,此线段长为半径的圆四条半径,故A、B、C、D四点共圆.
⊙O的半径为根号5,可以这样设正方形ABCD的边长为2x,则OC=x,CD=2x,设⊙O半径为r连接OD、OF,则DO=OF=r,由正方形CEFG的面积是4,可得它的边长是2,即CG=FG=2在Rt△
设圆心(x,2/x),则A(x,0),B(0,2/x)SAOB=x*2/x*1/2=1
你是想问当C离AB最近时C点的坐标吗?再问:是的再答:要过程吗?
1.结论OP∥BC是成立的∵△APO≌△CPO,∴∠APO=∠CPO∴∠APC=2∠APO∠APC和∠ABC都是弧AC对应的圆周角∴∠ABC=∠APC=2∠APO∵∠POB=∠PAO+∠APO=2∠A
PA垂直BC,AC垂直BC,所以BC垂直平面PAC,又因为BC在平面PBC中,所以PAC垂直PBC.手机打字不容易,求过
设OC长为x,则半径为√5在三角形OGF中使用勾股定理即可得OF=4√5
在弧AC上取点D,连接AD、CD∵∠ADC为圆心角∠AOC所对应的圆周角∴∠ADC=∠AOC/2=a/2∵四边形ABCD内接于圆O∴∠ABC+∠ADC=180∴a+a/2=180∴a=120°
(1)由已知可得:tanα=yx=4535=43,(2分)则sin2α+sin2αcos2α+cos2α=sin2α+2sinαcosαcos2α +cos2α-sin2α(4分)=tan2
Q(X,Y)=t(x,y)+(1-t)(x,0)=(x,ty) x²+y²=4X²+(Y/t)²=4&nb
两对圆周角相等,然后由AC=BD,全等,然后有AB=CD告诉你思路,具体过程你自己能写了吧再问:啊?我还不会啊~怎么办~?再答:AC=BDsoADC=DABorADC=DCBbecauseABD=AC
(1)设Q(x,y),A(x0,y0),B(x0,0).∵OQ=tOA+(1−t)OB,∴(x,y)=t(x0,y0)+(1-t)(x0,0)=(x0,ty0),∴x0=xy0=1ty.又A(x0,y
仅提供思路给你还是自己算吧数学就是要多动手算这样你的数学才能提高1.向量OQ=tOA+(1-t)OB可以得出---ABQ三点共线根据圆C上任意一点A在x轴上的摄影为点BABQ垂直X轴的再问:主要是第二
证法1:连接OA,OB.OA=OB,则∠A=∠B;又AC=BD.故:⊿OAC≌ΔOBD(SAS),得:OC=OD.证法2:作OM垂直AB于M,则AM=BM.又AC=BD,故CM=DM.(等量减等量差等
符合条件的点P共有三个.(1)当点P在BA延长线上P1点时:若OQ=P1Q,则∠QOP1=∠QP1O,设∠COQ=X,则∠QP1O=X+30.∠OCQ=X+60=∠OQC. 则:2(X+60