已知a2 b2-2a 6b 10=0,求2*a的100次方-3*b的负一次方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 19:33:52
证明:∵(a2+b2-c2)2-4a2b2=(a2+b2-c2)2-(2ab)2=(a2+b2-c2+2ab)(a2+b2-c2-2ab)=[(a2+2ab+b2)-c2][(a2-2ab+b2)-c
a4+b4-c4+2a2b2=(a2+b2)2-c4=(a2+b2+c2)(a2+b2-c2)=0,则有a2+b2-c2=0所以三角形是直角三角形,两直角边为a=5,b=13三角形面积65/2
由根的判别式=0可得16(a2+b2+c2)^2=16*3(a2b2+b2c2+c2a2)(a2+b2+c2)^2=3(a2b2+b2c2+c2a2)a4+b4+c4+2(a2b2+b2c2+c2a2
∵a+b=5,ab=3,∴a3b-2a2b2+ab3=ab(a2-2ab+b2)=ab(a-b)2=ab[(a+b)2-4ab]=3(25-12)=39.故答案为:39.
a+b=4两边平方a²+2ab+b²=162ab=16-(a²+b²)=12ab=6所以a²b²=(ab)²=36(a-b)
a=b=1或者a=b=-1
1.设an=a1+(n-1)d=1+(n-1)d,bn=b1q^(n-1)=q^(n-1)所以a2b2=(1+d)q=2,a3b3=(1+2d)q²=7/4,解得d=3,q=1/2,;或d=
(1+b)q=2 (1+2b)q^2=7/4b=3 b=-3/7q=1/2 q=7/2
原式=ab(a2+2ab+b2)=ab(a+b)2,当a+b=5,ab=3时,原式=3×52=75.故答案是:75.
a²b+2a²b²+ab²=ab(a+2ab+b)=2/5×(3+2×2/5)=38/25=1又13/25
a2b2+a2+b2+1=4ab变形得:a2b2-2ab+1+a2+b2-2ab=(ab-1)2+(a-b)2=0,∴ab-1=0,a-b=0,解得:a=1,b=1,或a=-1,b=-1.故答案为:1
问题是什么?对于Sn,Sn为=等差数列与等比数列的对应各项积,所以Sn-qSn=a1b1+db2+db3+...+dbn-db(n+1)推出Sn=...对于Tn,Tn=Sn-2a1b1-2a4b4-2
(a2+b2)(a2+b2-2)=15,把a2+b2看一整体,可解得a2+b2=5或-3(平方和不能为负,-3舍掉)最后的结果是5
原式=ab(a+3ab+b),=ab(a+b+3ab).∵a+b=6,ab=4,∴原式=4×(6+3×4)=72.
A1(1,1/2)A2(3,9/2)B1(1,0)B2(3,0)面积=(1/2+9/2)×(3-1)÷2=5;如果本题有什么不明白可以追问,
∵c4-2(a2+b2)c2+a4+a2b2+b4=0,⇒c4-2(a2+b2)c2+(a2+b2)2-a2b2=0,⇒[c2-(a2+b2)]2-(ab)2=0,⇒(c2-a2-b2-ab)(c2-
原式=ab(a2+2ab+b2)=ab(a+b)2,当ab=2,a+b=5时,原式=2×25=50.
因为Tn=3*2^1+5*2^2+7*2^3+9*2^4.(2n+1)2^n所以2Tn=3*2^2+5*2^3+7*2^4+9*2^5.(2n+1)*2^(n+1)两式相减(把2次方相同的项合并)得到
∵a3b-2a2b2+ab3=ab(a2-2ab+b2)=ab(a-b)2而a-b=5,ab=3,∴a3b-2a2b2+ab3=3×25=75.
解法一:∵a-b=1且ab=2,∴a3b-2a2b2+ab3=ab(a2-2ab+b2)=ab(a-b)2=2×12=2;解法二:由a-b=1且ab=2解得a=2b=1或a=−1b=−2,当a=2b=