已知an为公差不等于0的等差数列
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 08:16:43
a(n)=a+(n-1)d,d不为0.[a(3)]^2=a(1)a(9)=a[a+8d]=[a+2d]^2,0=a^2+8ad-a^2-4ad-4d^2=4ad-4d^2=4d(a-d),0=a-d.
数列an满足条件:A1=1,A2=r(r>0)数列{an+an+1}是公差为d的等差数,令bn=an+an+1即首项b1=a1+a2=1+rb3=a3+a4=b1+2d=1+r+2db5=a5+a6=
a1=a2-d,a5=a2+3d所以a2a2=(a2-d)(a2+3d)得2da2=3dd即a2=3d/2所以a1=a2-d=1d/2=1得出d=2公差=2,首项=1,后面你会的即a10=19故S10
a2=a1+d,a3=a1+2d.,a6=a1+5d,...,a10=a1+9d,若a1,a3,a6成等比数列,则a3^2=a1*a6,(a1+2d)^2=a1*(a1+5d),得到a1=4d.则(a
a1,a3,a9成等比数列a3^2=a1*a9(a1+2d)^2=a1*(a1+8d)解得a1=d(a1+a3+a9)/(a2+a4+a10)=(3a1+10d)/(3a1+13d)=13d/16d=
1.S5=5a1+10d=5(a1+2d)=70a1+2d=14a3=14a7^2=a2×a22(a3+4d)^2=(a3-d)(a3+19d)a3=14代入,整理,得d(d-4)=0d=0(已知d不
已知等差数列an的公差d不等于0,它的前n项和为Sn,若…4018
由题知:(a1+2d)(a1+14d)=(a1+8d)^2化简得到:(a1)^2+16a1*d+28d^2=(a1)^2+16a1*d+64d^236d^2=0解得:d=0因为d≠0故无解
已知公差为d(d不等于0),a1=1,那么:a2=a1+d=1+d,a5=a1+4d=1+4d,a14=a1+13d=1+13d又a2a5a14依次成等比数列,所以:(a5)²=a2*a14
(1)由题意a2=1+d=b2=qa6=1+5d=b3=q^2,解得:d=3,q=4.(2)由(1)知等差数列的首项为1,公差为3,所以an=1+(n-1)*3=3n-2;等比数列的首相为1,公比为4
1.S5=5a1+10d=5(a1+2d)=70a1+2d=14a3=14a7^2=a2×a22(a3+4d)^2=(a3-d)(a3+19d)a3=14代入,整理,得d(d-4)=0d=0(已知d不
因为a5=a1+4d,a9=a1+8d,a15=a1+14d且a5a9a15成等比数列所以(a1+8d)^2=(a1+4d)(a1+14d)即(a1)^2+16a1*d+64d^2=(a1)^2+18
/>因为a,x1,x2,b成差数列,公差为d1.所以b=a+3d1即d1=(b-a)/3,………………①因为a,y1,y2,y3,b成等差数列,公差为d2所以:b=a+4d2即d2=(b-a)/4……
(1)当n=4时有a1,a2,a3,a4.将此数列删去某一项得到的数列(按照原来的顺序)是等比数列.如果删去a1,或a4,则等于有3个项既是等差又是等比.可以证明在公差不等于零的情况下不成立(a-d)
再问:求k1+2k2+3k3+.......+nkn=多少再答:令S=k1+2k2+...+nkn=2*[3^0+2*3^1+3*3^2+………+n*3^(n-1)]-(1+n)n/2令T=3^0+2
是x²-a3x+a4=0,还是x²-a3+a4=0?x^2-(a1+2d)x+(a1+3d)=0将根a1,a1+d分别代入a1^2-a1^2-2da1+a1+3d=0(2d-1)a
【解】(1)方程A(k)(X^2)+2A(k+1)X+A(k+2)=0,则其Δ=4[A(k+1)^2-A(k)*A(k+2)]=4[[A(k)+d]^2-A(k)*[A(k)+2d]]=4d^2>0;
依题意,有:a3*a9=a7^2即(a1+2d)(a1+8d)=(a1+6d)^2解得:d=-0.1d因此a1+a6=2a1+5d=1.5da2+a3=2a1+3d=1.7d则(a1+a6)/(a2+
a1+a2+...+an=(1/2)(an²+an)a1+a2+...+a(n-1)=(1/2)(a(n-1)²+a(n-1))两式相减得an=(1/2)(an²+an)
令an=a1+(n-1)*d由题意:a1+4d=10a1+11d=31解得:d=3a1=-2很高兴为你解决问题!