已知an为等差数列公差d不等于0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 12:06:36
已知an为等差数列公差d不等于0
已知等差数列{an}的公差d不等于0,其前n项和为sn,且a1,a3,a9成等比数列,则s3/s7=多少

a(n)=a+(n-1)d,d不为0.[a(3)]^2=a(1)a(9)=a[a+8d]=[a+2d]^2,0=a^2+8ad-a^2-4ad-4d^2=4ad-4d^2=4d(a-d),0=a-d.

已知等差数列an的公差d不等于零,且a1,a3,a13成等比数列,若a1=1,

设等差数列的公差为d,a1,a3,a13成等比数列,则(a3)²=a1•a13(1+2d)²=1+12d,4d²=8d.因为公差不为0,所以d=2.从而an=

已知数列an为等差数列,公差d≠0,bn为等比数列,公比为q,

显然有:an=a1+(n-1)d,bn=b1*q^(n-1),又a3=b3,a7=b5,所以:a1+2d=a1*q^2,①a1+6d=a1*q^4,②由上面2个式子,得到:3①-②:2a1=a1*(3

已知{an}为等差数列,公差d不等于0,且a1、a2、a3成等比数列,则求/

a2=a1+d,a3=a1+2d.,a6=a1+5d,...,a10=a1+9d,若a1,a3,a6成等比数列,则a3^2=a1*a6,(a1+2d)^2=a1*(a1+5d),得到a1=4d.则(a

已知等差数列{an}的公差d不等于0且a1,a3,a9成等比数列,则看图

a1,a3,a9成等比数列a3^2=a1*a9(a1+2d)^2=a1*(a1+8d)解得a1=d(a1+a3+a9)/(a2+a4+a10)=(3a1+10d)/(3a1+13d)=13d/16d=

已知等差数列{an}的公差d 不等于 0 ,它的前 n项和为Sn ,若Ss = 70 ,且a2...

1.S5=5a1+10d=5(a1+2d)=70a1+2d=14a3=14a7^2=a2×a22(a3+4d)^2=(a3-d)(a3+19d)a3=14代入,整理,得d(d-4)=0d=0(已知d不

已知等差数列an的公差d不等于0,它的前n项和为Sn,若S5=70如题

已知等差数列an的公差d不等于0,它的前n项和为Sn,若…4018

已知等差数列[AN]的公差D不等于0,若A3,A9,A15成等比数列,那么公比为?

由题知:(a1+2d)(a1+14d)=(a1+8d)^2化简得到:(a1)^2+16a1*d+28d^2=(a1)^2+16a1*d+64d^236d^2=0解得:d=0因为d≠0故无解

已知数列{an}为等差数列,公差为d(d不等于0),a1=1 且a2 a5 a14依次成等比数列求an Sn

已知公差为d(d不等于0),a1=1,那么:a2=a1+d=1+d,a5=a1+4d=1+4d,a14=a1+13d=1+13d又a2a5a14依次成等比数列,所以:(a5)²=a2*a14

已知等差数列an的公差d不等于0

1.S5=5a1+10d=5(a1+2d)=70a1+2d=14a3=14a7^2=a2×a22(a3+4d)^2=(a3-d)(a3+19d)a3=14代入,整理,得d(d-4)=0d=0(已知d不

已知等差数列[an]的公差d不等于零,若a5,a9,a15成等比数列,公比为?

因为a5=a1+4d,a9=a1+8d,a15=a1+14d且a5a9a15成等比数列所以(a1+8d)^2=(a1+4d)(a1+14d)即(a1)^2+16a1*d+64d^2=(a1)^2+18

已知等差数列〔an〕,公差d不等于0,〔an〕中的部分项组成的数列ak1,ak2..akn...恰好为等比数列,其中k1

再问:求k1+2k2+3k3+.......+nkn=多少再答:令S=k1+2k2+...+nkn=2*[3^0+2*3^1+3*3^2+………+n*3^(n-1)]-(1+n)n/2令T=3^0+2

已知{an}是首项伟50,公差为2的等差数列,{bn}是首项为10,公差为d的等差数列,

ak=48+2kbk=10+(k-1)dSk=(48+2k)[10+(k-1)d]令SK≤21即(48+2k)[10+(k-1)d]≤21求出k来.再问:最大圆面积为Sk

已知数列{an}为等差数列,公差d不等于0,其中ak1,ak2,...akn恰为等比数列,若k1=1,k2=5,k3=1

a1*a17=a5^2a1(a1+16d)=(a1+4d)^2a1^2+16a1d=a1^2+8a1d+16d^216d^2-8a1d=08d(2d-a1)=0a1=2d2d,3d,4d,5d,6d,

数学数列难题已知等差数列{an}公差为d,d不等于0,等比数列{bn}公比q,q大于1.设Sn =a1b1 +a2b2

问题是什么?对于Sn,Sn为=等差数列与等比数列的对应各项积,所以Sn-qSn=a1b1+db2+db3+...+dbn-db(n+1)推出Sn=...对于Tn,Tn=Sn-2a1b1-2a4b4-2

已知数列An是等差数列,公差d不等于0,An不等于0,(n属于正整数)

【解】(1)方程A(k)(X^2)+2A(k+1)X+A(k+2)=0,则其Δ=4[A(k+1)^2-A(k)*A(k+2)]=4[[A(k)+d]^2-A(k)*[A(k)+2d]]=4d^2>0;

已知等差数列{An}的公差d

因为{An}是等差数列,所以A2+A8=A4+A6=10,A4*A6=24,所以可将A4、A6看作方程x^2-24x+10=0的两个根,因为d

已知数列{an}为等差数列,公差d不等于0,切a3,a7,a9成等比数列,求(a1+a6)/(a2+a3)的值

依题意,有:a3*a9=a7^2即(a1+2d)(a1+8d)=(a1+6d)^2解得:d=-0.1d因此a1+a6=2a1+5d=1.5da2+a3=2a1+3d=1.7d则(a1+a6)/(a2+

已知等差数列an中,公差d

先求An的通项就行了A1+A4=14A2A3=45d

{an}为等差数列,an不等于0,d为公差,求证:1/(a1a2)+1/(a2a3)+...+1/(an-1*an)=(

证明:左边=1/(a1a2)+1/(a2a3)+...+1/(an-1*an)=1/d(1/a1-1/a2)+1/d(1/a2-1/a3)+...+1/d(1/an-1-1/an)=1/d[(1/a2