已知an小于bn,证明an也收敛收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 04:09:19
已知an小于bn,证明an也收敛收敛
已知数列an满足a1=2 其前n项和为Sn Sn =n+7~3an 数列bn满足 bn=an~1 证明数列bn是等差数列

已知:数列an满足a1=2,其前n项和为Sn=n+7-3an;数列bn满足bn=an-1,证明数列bn是等差数列.代入an=Sn-S(n-1),得Sn=n+7-3(Sn-S(n-1)),变形成:Sn-

级数∑Bn,∑An-A(n-1)收敛,证明∑An*Bn收敛

∑An-A(n-1)=limAn-A1,所以An极限存在,极限存在的数列必有界设|An|≤M,那么由∑Bn收敛,可以知道∑An*Bn绝对收敛,因此该级数必然收敛

已知等差数列{an},a1=a,公差d=1.若bn=an^2-a(n+1)^2,试判断数列{bn}是否为等差数列.并证明

a=1,是等差数列,否则,不是.再问:过程?再答:an=a+(n-1),bn=a^2+2a(n-1)+(n-1)^2-a(n+1)^2=a^2+2a(n-1)+(1-a)(n-1)^2,若a=1,bn

已知数列{an}满足:an+an+1=2an+2,且a1=1,a2=2,n∈N* 一:设bn=an+1-an ,证明bn

a(n)+a(n+1)=2a(n+2),n=1,2,...2a(n+2)-2a(n+1)=a(n)+a(n+1)-2a(n+1)=-[a(n+1)-a(n)],b(n)=a(n+1)-a(n),n=1

已知数列{an}中a1=1 a2=2 且an+1=(1+q)an-qan-1设bn=an+1-an 证明{bn}是等比数

a(n+1)=(1+q)an-qa(n-1)a(n+1)=an+qan-qa(n-1)a(n+1)-an=qan-qa(n-1)a(n+1)-an=q[an-a(n-1)][a(n+1)-an]/[a

已知数列{an}满足a1=1,a2=2,an+2=(an+an+1)/2,n∈N*.令bn=an+1-an,证明{bn}

上面的答案显然有点问题(1)an+2=(an+an+1)/22a(n+2)=an+a(n+1)2[a(n+2)-a(n+1)]=-[a(n+1)-an][a(n+2)-a(n+1)]/[a(n+1)-

已知,n∈N+,An=2n∧2,Bn=3∧n,试猜测An与Bn的大小,并用数学归纳法证明

当nBn.代值验算当n>=3时,An(2k)^2+(2k)*8+64>(2k)^2+8k+4=(2(k+1))^2=A(k+1)(解释:由于k>=4,这步里第一个大于号前面的第一项不动,第二项的K代一

设{an}是等差数列,bn={1/2}^an,已知b1+b2+b3=21/8,b1b2b3=1/8,证明{bn}是等比数

(1/2)^a1+(1/2)^a2+(1/2)a^3=21/8(1/2)^a1*(1/2)^a2*(1/2)^a3=1/8(1/2)^(a1+a2+a3)=1/8a2=1a1=1或a1=4a3=4或1

如何证明这个收敛性?已知,无穷数列{An}有界但是不收敛.证明,存在{An}的两个子序列{Bn}和{Cn},他们有界且收

你说的数列{An}应该默认是实数域R中的吧~这个定理其实就是Weirstrass-Bolzano定理:(无穷)有界数列必有收敛子列.Weirstrass-Bolzano定理证明方法有很多,区间套原理证

正项级数 an 收敛 bn小于等于an 则级数 bn 收敛 怎么证明?

这个是定理啊,大收敛推出小收敛,基本上不用证明.如果非要证也很简单,写一写定义就可以了.再问:老师问我们为什么--我该怎么说求解~再答:你是什么专业的?用e-N定理说一下就出来了。对任意e>0存在N,

已知等比数列{bn}是公比为q与数列{an}满足bn=3^an,(1)证明数列{an}是等差数列 (2)若b8=3,且数

1.bn/b(n-1)=3[an-a(n-1)]=q所以an-a(n-1)=log(3)q2.a2=13a8=1d=-2an=17-2n3.n8Tn=-[a1+.an]+2[a1+.+a8=n^2-1

已知数列an满足:a1=a2=1,an+2=an+1+an,若cn=an-4bn,bn属于整数,且cn大于等于0小于4,

这个问题在考查斐波那契数列;根据递推公式,an应为斐波那契数列,他的通项公式是很容易求的的,只是使用两个无理数的幂来表达的,对解决这个问题不一定很有用.这个问题主要要用到一些数论的方法.因为0

数列an中,a1=3,an=(3an-1-2)/an-1,数列bn满足bn=an-2/1-an,证明bn是等比数列 2.

(1)bn+1=(an+1-2)/(1-an+1)=(an-2)/(2-2an)bn=(an-2)/(1-an)bn+1/bn=1/2b1=-1/2bn为等比数列(2)(an-2)/(1-an)=-1

在数列{An},{Bn}中,已知An大于0,Bn大于0,且An,Bn,An+1成等差,Bn,An+1,Bn+1成等比,求

An,Bn,An+1成等差A1=1.B1=2所以A2=3又Bn,An+1,Bn+1成等比所以B2=9/2所以A3=6,B3=8A4=10,B4=25/2所以,An=n(n-1)/2,Bn=(n+1)^

正整数列{an},{bn}满足对任意正整数n,an、bn、an+1成等差数列,bn、an+1、bn+1成等比数列,证明:

当n>=2时,因为bn、an+1、bn+1成等比数列且都是正整数,所以an+1=(bn)^(1/2)*(bn+1)^(1/2),an=(bn-1)^(1/2)*(bn)^(1/2),an、bn、an+

{an}是等差数列,bn={1/2}^an,已知b1+b2+b3=21/8,b1b2b3=1/8,证明{bn}是等比数列

n=(1/2)^anbn-1=(1/2)^an-1bn/bn-1=(1/2)^an-an-1=(1/2)^d是常数,(d是{an}的公差所以{bn}是等比数列

已知数列an中,a(n+1)=an/an+1 已知a1=2,bn=1/an,用定义法证明bn是等差数列

两边同乘以(an)+1得到:a(n+1)[(an)+1]=an(an)*[a(n+1)]+[a(n+1)]=(an)an*a(n+1)=an-a(n+1)两边同除以an*a(n+1),得到:1=1/a

{an-bn}的极限是0 证明{an} {bn}极限相等

题目不够严谨,应该这样说:{an-bn}的极限是0,且{an}、{bn}的极限都存在,证明{an}{bn}极限相等因为liman-bn=0根据极限的减法运算:liman-bn=liman-limbn=

设An>0,级数An收敛,Bn=1-ln(1+An)/An,证明级数Bn收敛

再答:如果你认可我的回答,敬请及时采纳,在右上角点击“采纳回答”即可。再问:能不能再帮我解决几个问题?再问:再答:你发提问吧,我看到会解答的再问:第六题和第七题,很急啊,再答:傅里叶啊,计算量太大了再