已知an小于bn,证明an也收敛收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 04:09:19
已知:数列an满足a1=2,其前n项和为Sn=n+7-3an;数列bn满足bn=an-1,证明数列bn是等差数列.代入an=Sn-S(n-1),得Sn=n+7-3(Sn-S(n-1)),变形成:Sn-
∑An-A(n-1)=limAn-A1,所以An极限存在,极限存在的数列必有界设|An|≤M,那么由∑Bn收敛,可以知道∑An*Bn绝对收敛,因此该级数必然收敛
a=1,是等差数列,否则,不是.再问:过程?再答:an=a+(n-1),bn=a^2+2a(n-1)+(n-1)^2-a(n+1)^2=a^2+2a(n-1)+(1-a)(n-1)^2,若a=1,bn
a(n)+a(n+1)=2a(n+2),n=1,2,...2a(n+2)-2a(n+1)=a(n)+a(n+1)-2a(n+1)=-[a(n+1)-a(n)],b(n)=a(n+1)-a(n),n=1
a(n+1)=(1+q)an-qa(n-1)a(n+1)=an+qan-qa(n-1)a(n+1)-an=qan-qa(n-1)a(n+1)-an=q[an-a(n-1)][a(n+1)-an]/[a
上面的答案显然有点问题(1)an+2=(an+an+1)/22a(n+2)=an+a(n+1)2[a(n+2)-a(n+1)]=-[a(n+1)-an][a(n+2)-a(n+1)]/[a(n+1)-
当nBn.代值验算当n>=3时,An(2k)^2+(2k)*8+64>(2k)^2+8k+4=(2(k+1))^2=A(k+1)(解释:由于k>=4,这步里第一个大于号前面的第一项不动,第二项的K代一
(1/2)^a1+(1/2)^a2+(1/2)a^3=21/8(1/2)^a1*(1/2)^a2*(1/2)^a3=1/8(1/2)^(a1+a2+a3)=1/8a2=1a1=1或a1=4a3=4或1
你说的数列{An}应该默认是实数域R中的吧~这个定理其实就是Weirstrass-Bolzano定理:(无穷)有界数列必有收敛子列.Weirstrass-Bolzano定理证明方法有很多,区间套原理证
这个是定理啊,大收敛推出小收敛,基本上不用证明.如果非要证也很简单,写一写定义就可以了.再问:老师问我们为什么--我该怎么说求解~再答:你是什么专业的?用e-N定理说一下就出来了。对任意e>0存在N,
1.bn/b(n-1)=3[an-a(n-1)]=q所以an-a(n-1)=log(3)q2.a2=13a8=1d=-2an=17-2n3.n8Tn=-[a1+.an]+2[a1+.+a8=n^2-1
这个问题在考查斐波那契数列;根据递推公式,an应为斐波那契数列,他的通项公式是很容易求的的,只是使用两个无理数的幂来表达的,对解决这个问题不一定很有用.这个问题主要要用到一些数论的方法.因为0
(1)bn+1=(an+1-2)/(1-an+1)=(an-2)/(2-2an)bn=(an-2)/(1-an)bn+1/bn=1/2b1=-1/2bn为等比数列(2)(an-2)/(1-an)=-1
An,Bn,An+1成等差A1=1.B1=2所以A2=3又Bn,An+1,Bn+1成等比所以B2=9/2所以A3=6,B3=8A4=10,B4=25/2所以,An=n(n-1)/2,Bn=(n+1)^
当n>=2时,因为bn、an+1、bn+1成等比数列且都是正整数,所以an+1=(bn)^(1/2)*(bn+1)^(1/2),an=(bn-1)^(1/2)*(bn)^(1/2),an、bn、an+
n=(1/2)^anbn-1=(1/2)^an-1bn/bn-1=(1/2)^an-an-1=(1/2)^d是常数,(d是{an}的公差所以{bn}是等比数列
两边同乘以(an)+1得到:a(n+1)[(an)+1]=an(an)*[a(n+1)]+[a(n+1)]=(an)an*a(n+1)=an-a(n+1)两边同除以an*a(n+1),得到:1=1/a
题目不够严谨,应该这样说:{an-bn}的极限是0,且{an}、{bn}的极限都存在,证明{an}{bn}极限相等因为liman-bn=0根据极限的减法运算:liman-bn=liman-limbn=
再答:如果你认可我的回答,敬请及时采纳,在右上角点击“采纳回答”即可。再问:能不能再帮我解决几个问题?再问:再答:你发提问吧,我看到会解答的再问:第六题和第七题,很急啊,再答:傅里叶啊,计算量太大了再