作业帮 > 数学 > 作业

已知数列{an}中a1=1 a2=2 且an+1=(1+q)an-qan-1设bn=an+1-an 证明{bn}是等比数

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/15 23:13:05
已知数列{an}中a1=1 a2=2 且an+1=(1+q)an-qan-1设bn=an+1-an 证明{bn}是等比数列
已知数列{an}中a1=1 a2=2 且an+1=(1+q)an-qan-1设bn=an+1-an 证明{bn}是等比数
a(n+1)=(1+q)an-qa(n-1)
a(n+1)=an+qan-qa(n-1)
a(n+1)-an=qan-qa(n-1)
a(n+1)-an=q[an-a(n-1)]
[a(n+1)-an]/[an-a(n-1)]=q
所以an-a(n-1)是以q为等比数列
an-a(n-1)=(a2-a1)q^(n-1)
an-a(n-1)=q^(n-1)
a(n+1)-an=q^n
bn=a(n+1)-an=q^n
b(n-1)=q^(n-1)
bn/b(n-1)=q^n/q^(n-1)=q
所以{bn}是等比数列