已知A^2 2A-3E=0,证明A的特征值只可能为-3或1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:40:17
已知A^2 2A-3E=0,证明A的特征值只可能为-3或1
已知A为n阶方阵,且满足A^2-3A-4E=0,证明:A可逆,并求A-1次方

A^2-3A-4E=0A^2-3EA=4E(A-3E)A=4E所以|A-3E||A|=|4E|=4^n≠0所以|A|≠0故A可逆因为(A-3E)A=4E所以[(A-3E)/4]A=E所以A^(-1)=

设方阵A满足2A^2+A-3E=0证明3E-A可逆

哎哟妈也线性代数.还是证明题,最受不了这个了.再问:呵呵呵呵呵呵......

已知n阶方阵A满足A^2-2A-3E=0 证明A可逆 并求A^-1

A^2-2A-3E=0A^2-2A=3EA(A-2E)=3EA(1/3*A-2/3*E)=E所以A可逆,A的逆矩阵为1/3*A-2/3*E

线性代数:已知n阶方阵A满足A^2=E,证明A-E可逆;

因为A^2=E所以(A-E)(A+E)=0题目是不是有问题

已知A是方阵,A^2+2A+E=0,证明A+E可逆

因为A^2+2A+E=0所以(A+E)^2=0所以|A+E|=0所以A+E不可逆题目有误

设A为n阶矩阵,|E-A|≠0,证明:(E+A)(E-A)*=(E-A)*(E+A)

由于(E-A)(E+A)=(E+A)(E-A)=E²-A²=E-A²对(E-A)(E+A)=(E+A)(E-A),两边分别左乘和右乘(E-A)逆有(E+A)(E-A)逆=

已知n阶矩阵A满足 A^2(A-2E)=3A-11E,证明A+2E可逆,并求(A+2E)^-1

因为A^2(A-2E)=3A-11E所以A^3-2A^2-3A+11E=0所以A^2(A+2E)-4A(A+2E)+5(A+2E)+E=0所以(A^2-4A+5E)(A+2E)=E所以A+2E可逆,且

.已知n阶方阵A满足关系式A^2-3A-2E=0,证明A是可逆矩阵,并求出其逆矩阵.

A^2-3A=2EA*(A-3E)/2=E所以A可逆逆矩阵为A^(-1)=(A-3E)/2

已知N阶方阵A满足A^2=4A,证明A-5E可逆?

A^2=4AA(A-4I)=0A=0orA-4I=0ifA=0A-4I=-4I(A-4I)^(-1)=(-1/4)IifA-4I=0A-5I=-Ithen(A-5I)^(-1)=-IieA-5I可逆

已知n阶方阵A满足A2+2A-3E=0,证明A可逆,并写出A的逆距阵的表达式

做法是这样的:A^2+2A=3E再因式分解A*(A+2E)/3=E所以A的逆矩阵是(A+2E)/3

已知n阶方阵A满足2A(A-E)=A^3,证明E-A可逆,并求(E-A)^(-1)

即2A(A-E)-E=A³-E2A(A-E)-E=(A-E)(A²+A+E)有(A-E)(A²-A+E)=-E有(E-A)(A²-A+E)=E所以E-A可逆,并

若A满足A^2-2A-4E=0,证明A+E与A-3E都可逆,且互为逆矩阵,若A满足A^2+2A+3E=0,证明A是可逆矩

(1)由(A+E)(A-3E)=A²-2A-3E=(A²-2A-4E)+E=0+E=E有A+E与A-3E都可逆,且互为逆矩阵(2)由A^2+2A+3E=0,有A(A+2E)=-3E

已知n阶矩阵A满足A^2-2A-3E=0,证明A的特征值只能是-1或3,怎么证明只能?

等式两边去行列式就行了,得到2个等式即为丨-E-A丨=0或者丨3E-A丨=0再根据矩阵的特征多项式丨λE-A丨=0即可看出A的特征值为-1或者3再问:为什么是只能?再答:如果它还有别的特征值比如说0,

已知方阵A满足A*A-A-2E=0,判断A,E-A是否可逆?如果可逆,求它们的逆矩阵.证明题

A*A-A-2E=0于是A*(A-E)=2EA*(A-E)/2=E(E-A)*(-A)/2=E则A,E-A都可逆,且A的逆矩阵是(A-E)/2,E-A的逆矩阵是-A/2

已知n阶方阵A满足A^2+2A-3E=0,证明A可对角化

[证明](方法一:构造法)见下图\x0d\x0d[证明](方法二:利用特征值与特征向量)见下图\x0d\x0d[证明](方法三:利用极小多项式)\x0d因为A满足A2+2A-3E=O,即(A-E)(A

22.设方阵A^3满足A^3-A^2+2A-E=0,证明:A及A-E均可逆.

A^3-A^2+2A=EA(A^2-A+2)=E所以A可逆A^3-A^2+2A-2E=-EA^2(A-E)+2(A-E)=-E(A^2+2)(A-E)=-E(-A^2-2)(A-E)=E所以A-E可逆

A^2-3A+4E=0,证明:A+E可逆并求其逆矩阵

因为A^2-3A+4E=(A+E)(A-4E)+8E=0所以(A+E)(A-4E)=-8E所以(A+E)[(-1/8)(A-4E)]=E因为|A+E||A-4E|=|-8E|≠0所以|A+E|≠0所以

设方阵A满足A^3-A^2+2A-E=0 ,证明: A及A-E均可逆.

因为A^3-A^2+2A-E=0所以A(A^2-A+2E)=E.所以A可逆,其逆为A^2-A+2E.再由A^3-A^2+2A-E=0得(A-E)(-A^2-2E)=E所以A-E可逆,且其逆为-A^2-

已知方阵满足A^2-2A+2E=0,证明A及A-3E都可逆,并求A和A-3E的逆矩阵

因为A^2-2A+2E=0,所以A(A-2E)=-2E所以A可逆,且A^-1=-1/2(A-2E).再由A^2-2A+2E=0A(A-3E)+(A-3E)+5E=0所以(A+E)(A-3E)=-5E所