已知a为三阶实对称阵,且a2=a
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:46:48
解:设A的属于特征值2的特征向量为(x1,x2,x3)'.因为实对称矩阵A的属于不同特征值的特征向量正交所以x1-x3=0其基础解系为:(1,0,1)',(0,1,0)',且正交将3个特征向量单位化得
∵M=(a1+a2+a3+a4)(a2+a3+a4+a5)=(a1+a2+a3+a4)(a2+a3+a4)+a5(a1+a2+a3+a4),N=(a1+a2+a3+a4+a5)(a2+a3+a4)=(
假设 λ 为A的特征值,因为A3+A2+A=3E,所以 λ3+λ2+λ-3=0.即 (λ3-1)+(λ2-1)+(λ-1)=0,得(λ-1)(λ2+2λ+3)=0.解得,
∵A(A-B)=A²-AB=E.∴A可逆,且A^(-1)=A-B,即有B=A-A^(-1).∴BA=A²-E=AB,则AB-BA+A=A.又∵A为N阶可逆矩阵,∴r(AB-BA+A
2.1-俩人都没中的概率=1-0.2*0.1=0.981.A-B显然的不一定,只要取A=B就看出来了AB非奇异,因为|AB|=|A||B|0
(a^2+b^2)2-(a^2+b^2)^2-6=0(a^2+b^2-3)(a^2+b^2+2)=0a^2+b^2+2>0(a^2+b^2-3)=0a^2+b^2=3
设a2+b2=x,则原式左边变为x2-x-6,∴x2-x-6=0.解得:x=3或-2.∵a2+b2≥0,∴a2+b2=3.
这就是齐次线性方程组呀自由变量x1,x3分别取1,0;0,1得基础解系(1,0,0)^T,(0,-1,1)^T
原式=(1+a+a2+a3)+a4(1+a+a2+a3)+a8(1+a+a2+a3)+…+a1992(1+a+a2+a3)=0
首先A的各行元素和为2,说明有一个特征向量x1=(1,1,1)^T,特征值为2又r(2E+A)=1,说明方程(A+2E)x=0有两个线性无关解x2,x3,所以x2,x3是A的特征值为-2的特征向量.这
A2=A是什么?打错了吧,麻烦修改一下.如果是A^2=A即A^2-A=0写成特征值方程λ^2-λ=0所以A可能的特征值是,0和1因为A的秩是2,所以是1,1,0方法总结一下就是------------
两侧的括号省略设A=abbca,bc均为实数.A^2=AA=ababbc乘bc按定义:AA=a^2+b^2ab+bcab+bcb^2+c^2由已知:A^2=0,即各元素均为0.得:a^2+b^2=0,
1、设a2+a3+…+a2005为x.M=(a1+x)(x+a2006)=a1x+a1a2006+xx+a2006xN=(a1+x+a2006)x=a1x+xx+a2006xM-N=a1a2006因为
A1,A2是关于点O对称证明:连OA,OA1,OA2则有∠A1OM=∠AOM,∠AOP=∠A2OP所以∠A1OA2=2(=∠AOM+∠AOP)=180°所以O,A1,A2三点共线又A1O=AO=A2O
若∧是由特征值λ1,λ2,...,λn构成的对角矩阵,则P^(-1)AP=∧不一定有A=P^(-1)∧P
∵a2+4a+1=0,∴a2+1=-4a,∴(a2+1)2=16a2,∴a4+2a2+1=16a2,即a4+1=14a2,∵a4+ma2+12a3+ma2+2a=3,∴14a2+ma22a(a2+1)
证明:设r是A的特征值,x是r对应的特征向量,则:x不等于零向量;Ax=rxAAx=A(rx)=r^2x=Ax=rx(r^2-r)x=0x不等于零向量,故r^2-r=0所以r=0或1
证明:(1)∵a2+b2=c2,∴a2=c2-b2=(c+b)(c-b),因为a是质数,而(c+b)和(c-b)不可能都等于a,所以c-b=1,c+b=a2,得到c=b+1,则b,c是两个连续的正整数
因为关于x=2对称,可看从图象上看出f(x-2)=f(x+2),所以f(x)=f(x+4)令x=1,再答:a=4
a+b=2可得:(a+b)^2=a^2+b^2+2ab=4因:a^2+b^2≥2ab所以有:4≥4ab即:ab≤1√(a^2)≥0,√(b^2)≥0,所以:√(a^2)+√(b^2)+4≥2√|ab|