作业帮 > 数学 > 作业

大学题目 线性代数 设A是n阶实对称矩阵且满足A2=A,又设A的秩为r . 请证明A的特征值为1或0

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 14:39:52
大学题目 线性代数 设A是n阶实对称矩阵且满足A2=A,又设A的秩为r . 请证明A的特征值为1或0
设A是n阶实对称矩阵且满足A2=A,又设A的秩为r . 请证明A的特征值为1或0
大学题目 线性代数 设A是n阶实对称矩阵且满足A2=A,又设A的秩为r . 请证明A的特征值为1或0
证明:
设r是A的特征值,x是r对应的特征向量,则:
x不等于零向量;
Ax=rx
AAx=A(rx)=r^2x=Ax=rx
(r^2-r)x=0 x不等于零向量,故 r^2-r=0
所以 r=0 或 1