已知fx等于sin
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:07:02
f(x)=[(cosx)^2-(sinx)^2]+√3sin2x=cos2x+√3sin2x=2sin(2x+π/6),最小正周期T=π,由-π/2+2kπ≤2x+π/6≤π/2+2kπ,k∈Z解得:
f(x)=√3sin²x+sinxcosx=√3[(1-cos2x)/2]+1/2sin2x=1/2sin2x-√3/2cos2x+√3/2=sin(2x-π/3)+√3/2∵x∈[π/2,
fx=2sin(2x+pai/6)振幅A=2最小正周期T=2pai/2=paix∈【0,pai/]2xE[0,2pai]2x+pai/6E[pai/6,2pai+pai/6]很明显,设u=2x+pai
f(0)=sin(0-π/6)+cos0=sin(-π/6)+cos0=-1/2+1=1/2如果想问的是化简后的结果,那么:f(x)=sin(x-π/6)+cosx=sinxcos(π/6)-cosx
fx=4cos²x-2+1-cos²x-4cosx=3cos²x-4cosx-1令t=cosx则-1≤t≤1即求[3t²-4t-1]的最值
[-3,3](也就是关于原点对称的最大定义域)
fx=2sin(wx+6/π)得到sin(wx+6/π)=√2/2令wx1+6/π=π/4wx2+6/π=3π/4则x2-x1=π两式相减得到w=1/2再问:为什么设π/4和3π/4呢?再答:这个是随
f(x)=(√3/2)sin2x-(1/2)[(cosx)^2-(sinx)^2]-1=(√3/2)sin2x-(1/2)cos2x-1=sin(2x-π/6)-1f(x)的最大值是0,最小值是-2,
别灰心.(1)f(x)=sin(x+π/4)+√2cos(x+π/2)(改题了)=(1/√2)(sinx+cosx)-√2sinx=(1/√2)(cosx-sinx)=cos(x+π/4),x∈[0,
f(x)=(1+1/tanx)*(sinx)^2-2sin(x+π/2)sin(x-π/4)=(1+cosx/sinx)*(sinx)^2+2sin(x+π/4)cos[(x-π/4)+π/2]=(s
f(x)=sinx-cosx=√2sin(x-4/π)(1).T=2π(2).f(x)max=√2f(x)min=-√2(3).sina+cosa=√2cos(a-π/4)cos(a-π/4)=√[1
第一题A.第二题B
你的分析前一半是对的,一直到“那么2x的单调增区间是[-4分之π,4分之π]”.2x的单调递增区间是[-π/2,π/2],x的才是[-π/4,π/4].所以函数在x=-π/3处取得最小值为-2分之根号
(1)fx=sin(2x+φ)经过点(π/12,1)sin(π/6+φ)=1∴π/6+φ=π/2+2kπ,k∈Z∴φ=π/3+2kπ,k∈Z∵0
解答;f(x)=sin(2x+3分之π)∴sin(2x+π/3)=-3/5∵x∈(0,π/2)∴2x+π/3∈(π/3,4π/3)∵sin(2x+π/3)
解1当2kπ-π/2≤2x+π/3≤2kπ+π/2,k属于Z时,y是增函数即2kπ-5π/6≤2x≤2kπ+π/6,k属于Z时,y是增函数即kπ-5π/12≤x≤kπ+π/12,k属于Z时,y是增函数
f'(x)=2x+a>0x>-a/2-a/2=-2a=4
f(x)=√3sin2x-2sin²x=√3sin2x-(1-cos2x)=2sin(2x+π/6)-1∴当sin(2x+π/6)=1时f(x)max=2*1-1=1