已知n阶矩阵A,B满足A²-AB=I证明矩阵A可逆并求A的逆矩阵负一次方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:28:10
A^2=A,B^2=B,(A+B)^2=(A+B)==>AB+BA=0==>0=A^2B+ABA=AB+ABA,0=ABA+BA^2=ABA+BA===>ABA=-AB=-BA==>AB=BA
这不是原题吧由AB-A-B=0得(A-E)B=A[注意左右的差别]则B=(A-E)^-1A但从你题目中推不出A-E可逆若要继续讨论,请给原题再问:已知设n阶方阵A,B满足AB=A+B证明A-E可逆这就
碰到这种问题不要偷懒,直接用待定系数法把B的9个元素设出来,然后乘开来比较等上面的做法做过一遍之后再做取巧一点的办法:(A-E)B=B(A-E),同样乘开来比较上面两个都做过之后可以设法去证明与Jor
A为n阶实正定对称矩阵,==>A=PP^T(存在P可逆)B为n阶反实对称矩阵==》P^{-1}BP^{-1}^T为n阶反实对称矩阵,==》P^{-1}BP^{-1}^T的特征值都是实部为0的复数,==
因为2A(A-E)=A^3所以A^3-2A^2+2A=0所以A^2(A-E)-A(A-E)+A-E=-E即(A^2-A+E)(E-A)=E所以E-A可逆,且(E-A)^-1=A^2-A+E.
证明:因为A^2=A所以A(A-I)=0若detA≠0则A可逆.则A-I=A^-1A(A-I)=A^-10=0所以有A=I.故A=I或detA=0
(E+3A)(E-3A)=E-9A^2=E
移项使等号右边等于0提取公因式会有AX(A-1)=0出现的当然先要两边加绝对值吧
小问题1似乎是特征分解.[V,D]=eig(K);这样就可以得矩阵V和对角阵D,满足K*V=V*D再问:恩。。这样特征值对角阵的确可以求出来,变化向量P怎么求了呢再答:P不就是V么。。。。V是单位正交
也是对的,看一下Sylvester不等式
1这个A不一定是可逆的.如果不可逆,A^(-1)不存在2跟第一个一样的错误
证明:因为A+B=AB所以(A-E)(B-E)=AB-A-B+E=E所以A-E可逆,且(A-E)^-1=B-E.由上知A-E与B-E互逆故有(B-E)(A-E)=E可得BA=A+B从而有AB=BA.
证∵(A-E)(B-E)=E又:det(A-E)*det(B-E)=detE=1∴det(A-E)≠0∴A-E是可逆阵
detA·detB=det(AB)=det(E)=1所以det(A)≠0所以A可逆A·B=E设B'·A=E则B'=B'·E=B'·(A·B)=(B'·A)·B=E·B=B所以AB=BA=E所以A的逆矩
A^2=2A说明A的特征值只可能是0或者2,所以A-I的特征值就是1或-1再利用实对称阵正交相似于对角阵得到A-I是正交阵另一种做法是直接算出(A-I)(A-I)^T=I,但上面的方法也应该掌握
由A+B=AB,得(A-E)(B-E)=E所以A-E=(B-E)^-1=0-30200001的逆矩阵=01/20-1/300001所以A=11/20-1/310002
B(A-E)=(A^2+A)(A-E)=A^3-E=2E-E=E所以B可逆,逆为A-E
因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).
A^2-3A+E=03A-A^2=E(3E-A)A==EA^(-1)=3E-A
1.rank(A)=dimKer(A)+dimKer(B)-dimR^n>0.再任取Ker(A)∩Ker(B)中的非零元x即可.方法二:Ax=0且Bx=0当且仅当(A|B)x=0,其中(A|B)为A和