已知PA,PB分别切圆O于点A,B,E是弧AB上动点,角P=50度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:47:50
证明:1、∵PA、PB切圆O于A、B∴PA=PB∵DE切圆O于C∴AD=CD,BE=CE∴DE=AD+BE∴△ADE的周长=PD+DE+PE=PD+AD+BE+PE=PA+PB=2PA∴△ADE的周长
(1)连结OA、OB,则OA⊥AP,OB⊥BP∴∠AOB=180°-∠APB=110°∠AQB=1/2∠AOB=55°(2)由切割线定理PA^2=PD*PE=PD*(PD+DE)可算得DE=6,∴圆的
图呢据描述可知:三角形DPA和APE相似,可得PD/PA=PA/PE即2/4=4/PE解得PE=8DE=PE-PD=6(直径)则半径OA=3方法二:PA维圆O切线,可知,OA垂直于PA又知OA=OD根
∠P=70°,所以∠AOB=110度,DA,DC,EB,EC分别是圆的切线,根据切线长定理,∠DOE=1/2∠AOB=55度DC=DA,EC=EB,所以周长为PD+PE+DE=PA+PB=2PA=10
根据圆外一点至圆作二切线段相等的性质,QA=QE,DE=DB,∴△PQD周长=PQ+QD+PD=PQ+QA+DB+PD=PA+PB=2PA=10cm.
EA=EC,FB=FC,PA=PB=2C△=PE+PF+EF=PE+PF+EC+FC=PE+PF+EA+FB=PA+PB=4
你所问问题是:已知PA,PB分别切圆O于A,B两点,C是弧AB上任一点,过C做圆O的切线分别交PA,PB于D,E.若三角形PDE的周长为12,求PA+PB的长.答PA+PB=12,利用切线定理,知AD
∵C、A是圆O的切点∴PA=PC同理,EC=EB∴△PDE的周长等于PA+PB,即8
如图示:设OP交AB于点C,则OP⊥AB,且OP平分AB,∴AC=½AB=6在Rt△PAC中,由勾股定理,得PC=√(PA²-AC²)=√[(3√13)²-6&
已知PA,PB分别于圆O相切于点A,B,∴AO⊥PA,BO⊥PB.∴△AOP是直角三角形.AO²+PA²=PO²,PO=PD+AO.AO²+PA²=(
(1)证明:如图,连接OA,则OA⊥AP,∵CD⊥AP,∴CD∥OA,∵CO∥AP,∴四边形ANMO是矩形,∴CO=DA;(2)连接OB,则OB⊥BP∵OA=CD,OA=OB,CO∥AP.∴OB=CD
经过半个小时的研究,你懂的第一个问,因为PA是切线,所以PA垂直于AC,又因为ED垂直于AC,所以PA平行于DE,所以DE除以PA等于CE除以CP,又因为EF平行于PB,所以EF除以PB也等于CE除以
(1)、因为PA、PB切圆O于A、B点,所以PA=PB,又有CD切圆O于E,连接OA、OE,OA=OE,OC=OC,所以三角形OAC全等于三角形OCE,所以AC=CE;同理:BD=ED;所以三角形PC
连接OA、OB∵PA、PB分别切⊙O于点A、B,∴OA⊥PA、OB⊥PB,∵∠P=58°,∴∠AOB=122°,∴∠C=61°.
设DC切圆O于点E,则DA=DE,CB=CEPA=PD+DA=PA+DE,PB=PC+CB=PC+CE△PCD周长为:PC+PD+CE=PD+DE+PC+CE=PA+PB=14再问:为什么da=de,
……亲你的问题呢E在(垂直于AB中点的)直线与圆的(远离圆心的)交点PE=2ABcos30°
周长25.02面积37.58再问:有过程么?
PA,PB分别切圆O,PAO是直角三角形已知圆O的半径为3cm,PO=6cm,PA,PB分别切圆O于A,B,则PA²=PO²-AO²=36-9=27PA=3√3