已知sn是等差数列an的前n项和 a5=2且a3是a1与-8 5得等比中项
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:35:16
1、Sn=(a1+an)n/2所以nan/Sn=2an/(a1+an)=2[a1+(n-1)d]/[2a1+(n-1)d]上下除以(n-1)=2[a1/(n-1)+d]/[2a1/(n-1)+d]n-
1、Sn=(a1+an)n/2所以nan/Sn=2an/(a1+an)=2[a1+(n-1)d]/[2a1+(n-1)d]上下除以(n-1)=2[a1/(n-1)+d]/[2a1/(n-1)+d]n-
证明an=Sn-S(n-1)=100n-n^2-[100(n-1)-(n-1)^2]=100n-n^2-[100n-100-(n^2-2n+1)]=100n-n^2-(-n^2+102n-101)=1
已知等差数列an的前n项之和是Sn,则-am
因为Sn-Sn-1=n^2-3n-{(n-1)^2-3(n-1)}=2n-4.又由an=Sn-Sn-1,所以an=2n-4,最后还要验证一下,当n=1时,S1=a1,符合题意.d=an-an-1=2易
设:等差数列{an}的公差为d,通项为an=a1+(n-1)d,则:sn=a1+a2+...+an=na1+n(n-1)d/2lim(n->∞)(n*an)/Sn=lim(n->∞)[n*(a1+(n
an+2Sn*Sn-1=0其中an=Sn-Sn-1代入上式:Sn-Sn-1+2Sn*Sn-1=0a1=1/2,故Sn和Sn-1≠0,上式两边同除以Sn*Sn-1得:1/Sn-1-1/Sn+2=0即:1
Sn-S(n-m)=A(n-m+1)+A(n-m+2)+……+A(n-m+m)=b共m项A(n-m+1)=A1+(n-m)dA(n-m+2)=A2+(n-m)d……A(n-m+m)=An=Am+(n-
由Sn=Sn-1/2Sn-1+1,两边同时取倒数可得1/Sn=(2Sn-1+1)/Sn-11/Sn=2+1/Sn-1即1/Sn-1/Sn-1=2故{1/Sn}是首项为1/2,公差为2的等差数列1/Sn
{Sn^(1/2)}是等差数列的充要条件是:原数列{An}也是一个等差数列,并且其公差d=2A1≥0.证明:可设An=A1+(n-1)(2A1),(A1≥0)所以Sn=nA1+n(n-1)d/2=A1
a2=a1qa8=a1q^7a5=a1q^42a8=a2+a52a1q^7=a1q+a1q^42q^6=1+q^32q^6=1+q^32q^6-q^3-1=0(2q^3+1)(q^3-1)=0q^3=
An=n^2-17n分解因式得An=(n-17)n这个二次函数与x轴的交点是0和170和17的中点是8.5就是说n取8或9均可以使得Sn最小答案:8或9
证设这个数列的第n项为an,前n项和为Sn.当n≥2时,an=Sn-Sn-1∴an=(4n^2+3n)-[4(n-1)^2+3(n-1)]=8n-1当n=1时,a1=S1=4+3=7由以上两种情况可知
S1/a1=1S2/a2-S1/a1=(2+d)/(1+d)-1=d/(1+d)S3/a3-S1/a1==(3+3d)/(1+2d)-1=(2+d)/(1+2d)2*d/(1+d)=(2+d)/(1+
n=1时,a1=S1=a+bn≥2时,Sn=a×n²+bnS(n-1)=a×(n-1)²+b两式相减得:an=Sn-S(n-1)=2a×n-a∴a(n-1)=2a×(n-1)-a∴
知道Sn,求an,需记住an=Sn-Sn-1当n=1是an=Sn=n²=1当n>=2时an=Sn-Sn-1=n²-(n-1)^2=2n-1a1=1也符合此式则an=2n-1再问:做
a3=a1*q^2;a9=a1*q^8;a6=a1*q^5;因为a3,a9,a6是等差数列,所以,2a9=a3+a6.化简,2q^9=q^3+q^6.s3+s6=a1*(1-q^3)/(1-q)+a1
等差数列数列的性质a1+a[2n-1]=2an因为S[2n-1]=[(2n-1)(a1+a[2n-1])]/2=(2n-1)anT[2n-1]=[(2n-1)(b1+b[2n-1])]/2=(2n-1
由题意,S9-S3=S6-S9而S9-S3=A4+...+A9S6-S9=-(A7+A8+A9)而(A4+A5+A6)+2(A7+A8+A9)=0A3(Q+Q²+Q²)+2A6(Q
证::n=1,a1=s1=4n>1an=Sn-Sn-1Sn=n^2+3nSn-1=(n-1)^2+3(n-1)an=2n+2经验证n=1满足通项n>1an-an-1=2,由等差数列定义可知,数列{an