:曲面在点P的法线必通过原点.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:25:14
你程序中法线的表示法 (x-1)/4=(y-1)/2=(z-3)/-1 在Mathematica中是不允许的,换言之,在 Mathematica中是不能用这种方式来画直线
内法线与外法线是利用曲线的弯曲方向来分的,此时考虑的是取哪一个法向量.法向量指向曲线的凹向,为内法线;指向曲线的凸向,为外法线.
首先如果曲面经过原点的话,那么曲面上距原点最近的点当然就是原点了,所以原点处曲面的法线当然经过原点.下面只证曲面不过原点的情况,设点(x,y,z)≠(0,0,0),则使该点到原点距离最小就是说使得x^
∵e^x-z+xy=3==>z=e^x+xy-3==>αz/αx│(2,1,0)=e²+1,αz/αy│(2,1,0)=2∴在点(2,1,0)处切平面的法向量是(e²+1,2,-1
先求平面x+3y+z+9=0的法向量:明显,(1,3,1)再求曲面的法向量:明显,(z'x,z'y,-1)=(y,x,-1)其中,z'x,z'y分别表示z对x,y的偏导数两法向量平行:y/1=x/3=
设一点P(x0,y0,z0)对Z求关于X和Y的导Zx=yZy=xZx(x0,y0,z0)=y0Zy(x0,y0,z0)=x0则法线方程为:Z-z0/-1=X-x0/y0=Y-y0/x0且此法线的方向向
设F(x,y,z)=xy-z那么它的法向量为n=(Fx,Fy,Fz)=(y,x,-1)(Fx,Fy,Fz为分别对F(x,y,z)的x,y,z求偏导数)又平面x+3y+z+9=0的法向量设为n'=(k,
http://zhidao.baidu.com/link?url=MDovhDXakNf_-glTeyO3GkfqOhLXNaIcV1ZF7wkYTLFHedpeQ0w89KenXbleQxqnzL-
一个沿平面方向的投影,一个沿曲面法向的投影.
设曲面议程为F(X,Y,Z)其对XYZ的偏导分别为(X,Y,Z),F2(X,Y,Z),F3(X,Y,Z)将点(2,1,0)代入得[F1,F2,F3](法向量)切平面方程F1*(X-2)+F2*(Y-1
由题意,设F(x,y,z)=ez-z+xy-3,则曲面在点(2,1,0)处的法向量为n=(Fx,Fy,Fz)|(2,1,0)=(y,x,ez-1)|(2,1,0)=(1,2,0)∴所求切平面方程(x-
曲面x³y-z=0,分别对x、y、z求偏导得法向量(3x²y,x³,1),垂直于平面6x-8y+z+9=0的向量是(6a,-8a,a),所以a=1,解得x=-2,y=1/
方程整理成为F(x,y,z)=x²+y²+z-4=0,切向量=(Fx,Fy,Fz)=(2x,2y,1)=(2,2,1),则法线(x-1)/2=(y-1)/2=(z-2)/1,切平面
两边对x求导得z'x-e^x+2y=0z'x=e^x-2y=e-4两边对y求导得z'y+2x=0z'y=-2所以切平面方程为-z'x(x-x0)-z'y(y-y0)+(z-z0)=0即(4-e)(x-
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.第一步首先求曲面2z-xy=0在(2,3,3)处的法向量设F(x,y,z)=2z-xy,则法向量为:(Fx,Fy,Fz)=(-y,-x,2)由于
x-y-1=0x+y-3=0;z=0
任意一曲面F(x,y,z)=0在点(x,y,z)的法向量为(Fx,Fy,Fz),那有其法向量了,那切平面就好求了,Fx意思为F对x的偏导数令F(x,y,z)=arctan(y/x)-zFx=(-y/x
令F(x,y,z)=sinz-z+xy-1则偏导数:Fx=yFy=xFz=cosz-1所以曲面sinz-z+xy=1在(2,-1,0)的法向量是:(-1,2,0)
令f(x,y,z)=x²-y²-z²那么f'x=2xf'y=-2yf'z=-2z所以在(2.0.2)点处的法向量为(4,0,-4)所以切平面方程为:4(x-2)-4(z-