已知x y是实数且(x y-1)的平方与

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:26:36
已知x y是实数且(x y-1)的平方与
已知x、y是实数且满足x2+xy+y2-2=0,设M=x2-xy+y2,则M的取值范围是______.

由x2+xy+y2-2=0得:x2+2xy+y2-2-xy=0,即(x+y)2=2+xy≥0,所以xy≥-2;由x2+xy+y2-2=0得:x2-2xy+y2-2+3xy=0,即(x-y)2=2-3x

已知xy都是正实数且满足4x²+4xy+y²+2x+y-6=0则x(1-y)的最小值

4x²+4xy+y²+2x+y-6=0(2x+y)²+(2x+y)-6=0(2x+y+3)(2x+y-2)=02x+y+3=0或2x+y-2=0y=-2x-3或y=2-2

已知实数x、y满足xy>0,且8/xy+1/x+1/y=1,

再问:该方法此处计算是错的,应该为,接下来的都不对了再答:那就从那步开始吧x+y=xy-8若x,y大于0xy-8=x+y≥2√xyxy-8≥2√xyxy-2√xy-8≥0(√xy-4)(√xy+2)≥

已知XY是实数,X/3+Y/4=1,则XY的最大值 解析

由,X/3+Y/4=1得y=4-4x/3.故求xy的最大值即求:xy=x(4-4x/3)=4x-4/3*x^2的最大值.根据抛物线性质易求得最大值即为顶点处.

已知x、y是实数,且适合方程(x²+xy-12)²+(xy-2y-1)² =0,求x、y的

∵(x2+xy-12)2+(xy-2y-1)2=0∴x2+xy-12=0,xy-2y-1=0解两式联立的方程组得:x=3,y=1

已知x,y是实数,且适合方程(xx+xy-12)(xx+xy-12)+(xy-2yy-1)(xy-2yy-1)=0求x,

(x²+xy-12)²+(xy-2y²-1)²=0由于平方数都大于或等于0,所以上式成立的前提是:(x²+xy-12)²=0,即:x&sup

已知x,y都是正实数,且x+y-3xy+5=0,则xy的最小值______.

由x+y-3xy+5=0得x+y+5=3xy.∴2xy+5≤x+y+5=3xy.∴3xy-2xy-5≥0,∴(xy+1)(3xy-5)≥0,∴xy≥53,即xy≥259,等号成立的条件是x=y.此时x

已知XY是实数,求式子x分之|x|+y分之|y|+xy分之|xy|的值

1)若x,y同为正数,则x分之|x|+y分之|y|+xy分之|xy|=1+1+1=32)若x,y同为负数,则x分之|x|+y分之|y|+xy分之|xy|=-1-1+1=-13)若x,y异号,比如x为正

已知x、y是实数,且适合方程(x²+xy-12)²+(xy-2y²-1)²=0

(x²+xy-12)²+(xy-2y²-1)²=0说明x²+xy-12=0xy-2y²-1=0解方程组x=(2y²+1)/y带入得

已知x y都是实数 且满足x^2+y^2+xy=1/3,求xy的最大值

解由题知求xy的最大值,则x,y必定同号,不妨设x,y同正则由x^2+y^2+xy=1/3得1/3=xy+x²+y²即1/3-xy=x²+y²≥2xy即1/3≥

已知xy是实数,且开方3x+4+y的平方-6y+9=0,求-xy开方的值

√(3x+4)+y^2-6y+9=0√(3x+4)+(y-3)^2=0√(3x+4)≥0,(y-3)^2≥0√(3x+4)=0,(y-3)^2=0x=-4/3,y=3-xy=-(-4/3)*3=4-x

已知xy是实数且[x+y-1]的平方

答:(x+y-1)的平方与根号2x-y+4互为相反数相反数之和为0:(x+y-1)²+√(2x-y+4)=0平方数和二次根式具有非负性质,同时为0时其和为0:x+y-1=02x-y+4=0解

设X,Y是实数,且X平方+XY+Y平方=1,求XY的取值范围

因为X平方,y平方一定大于等于0将等式变换为:x平方+y平方=1-xy可得:xy=0所以:xy>=-1综上所述可得:-1

已知XY是实数,且根号2X-1加根号1-2X加Y等于4,求根号XY的值

2x-1与1-2x都要大等于零,所以x=0.5所以y=4xy=2

设X.Y是实数,且X+Y=1,则XY的最大值

因为x>0,y>0由基本不等式可知x+y≥2√xy即1≥2√xy所以可知xy≤1/4当且仅当x=y=1/2时等号成立所以可知xy的最大值为1/4

已知实数xy满足x/y=x-y,且y>1,则实数x的取值范围是

x>=4x/y=x-yx=(x-y)yx=xy-y2y2=x(y-1)x=y2/(y-1)设y-1=t因为y>1所以t>0故x=(t2+2t+1)/tx=t+1/t+2>=2根号1+2x>=4

已知x,y都是正实数 且1/2xy-y-x=6 求x+y与xy的取值范围

为了简便,设x+y=m,xy=n,依题意:n/2-m=6,即n=12+2m或m=n/2-6因为(a+b)^2>=4ab,即m^2>=4n.联立以上两式,分别消去其中一个得到:m^2>=4(12+2m)

已知x、y是实数,且适合方程(x^2+xy-12)^2+(xy-2y^2-1)^2=0,球x.y的值

把常数项消掉,可以得到关于x,y的方程,求出y关于x的表达式,带入就可以求解了x^2+xy-12=0xy-2y^2-1=0,将这个方程两边同时乘以12,有12xy-24y^2-12=0做差,得x^2-

已知x,y是实数,且适合方程(x^2+xy-12)^2+(xy-2y^2-1)^2=0

简单,两个括号内式子的平方都是大于等于零的,而它们的和又为零,故它们分别都为零.余下来的你慢慢算吧,这还算不出来你就撞墙吧,

已知x、y是实数,且适合方程(x²+xy-12)²+(xy-2y²-1)²=0.

因为(x²+xy-12)²≥0,(xy-2y²-1)²≥0,且(x²+xy-12)²+(xy-2y²-1)²=0所以当且