已知x1,x2是方程x的平方 mx m-1=0的两个实数根,且

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 20:22:21
已知x1,x2是方程x的平方 mx m-1=0的两个实数根,且
已知x1,x2是方程x平方-2根号2x+m=0的两个实数根,且2x1+x2=-3根号2+1

有题意有:x1x2=m,x1+x2=2根号2,2x1+x2=-3根号2+1解得x1=-5根号2+1,x2=7根号2-1,m=-71+12根号2;(根号下x1/x2)+(根号下x2/x1)无解,因为x1

已知X1,X2是方程X平方+(2-M)X+(1+M)=0的两个根,求X1平方+X2平方的最小值

x1,x2是x²+(2-M)x+(1+M)=0的两个根x1+x2=M-2x1x2=1+Mx1²+x2²>=2x1x2=2(1+M)当且仅当x1=x2时,有最小值.即根的判

已知x1,x2是方程mx的平方+2x+m=0的两个根,求x1的平方+x2的平方的最小值

根据韦达定理x1+x2=-b/a=-2/mx1x2=c/a=m/m=1∴x1²+x2²=(x1+x2)²-2x1x2=4/m²-2≥-2所以最小值为-2

已知 x1,x2是方程x平方+6x+3=0的两个实数根 ,则x2/x1-x1/x2的值等于

x1,x2是方程x平方+6x+3=0的两个实数根,可得:x1+x2=-6;x1x2=3所以有:(x2-x1)^2=(x1+x2)^2-4x1x2=36-12=24即:x2-x1=±2√6x2/x1-x

已知x1 x2是方程x平方+6x+3=0的两个实数根 则x2/x1-x1/x2的值等于

x1,x2是方程x平方+6x+3=0的两个实数根,可得:x1+x2=-6;x1x2=3(韦达定理)所以有:(x2-x1)^2=(x1+x2)^2-4*x1x2=36-12=24即:x2-x1=±2√6

设X1 X2是方程X平方-2mX+(m平方+2m+3)=0的两实根,则X1平方+X2平方的最小值

由韦达定理得:因为a=1,b=-2m,c=m^2+2m+3所以X1+X2=2mX1X2=m^2+2m+3所以X1^2+X2^2=(X1+X2)^2-2X1X2=2m^2-4m-6由△=b^2-4ac=

已知x1,x2是方程x的平方+6x+3=0的两实数根,求x1分之x2十x2分之x1的值.

∵x²+6x+3=0∴x1+x2=-6x1x2=3x1/x2+x2/x1=(x1+x2)²-2x1x2/x1x2=10

已知x1,x2是方程x的平方+mx+m-1=0的两个实数根,且x1的平方+x2的平方=17,求m的值.

. x1,x2是方程x的平方+mx+m-1=0的二个实数根x1+x2=-m,x1·x2=m-1∴x1的平方+x2的平方=(x1+x2)-2x1·x2=m-2(m-1)m-2(m-1)=17m

已知x1,x2是方程x的平方+mx+m-1=0的二个实数根,且x1的平方+x2的平方=17,求M的值

x1,x2是方程x的平方+mx+m-1=0的二个实数根x1+x2=-m,x1·x2=m-1∴x1的平方+x2的平方=(x1+x2)²-2x1·x2=m²-2(m-1)m²

已知X1,X2(X1〈X2)是方程X平方-(M-1)X+N=0的两个实数根,Y1,Y2是方程Y平方+(N+1)Y-6M=

由韦达定理:x1+x2=m-1,y1+y2=-(n+1),x1*x2=n,y1*y2=-6m所以x1+x2-(y1+y2)=(x1-y1)-(y2-x2)=0,即m-1+n+1=0,m+n=0,m=-

1、已知X1、X2是关于X的方程X平方+MX+N=0的两根,X1+1,X2+1,是关于X的方程X平方+NX+M=0的两根

x1+x2=mx1*x2=nx1+1+x2+1=n(x1+1)*(x2+1)=m得出m=n-2=-3n=-1直接求解方程得到x1=1/2,x2=(4k-1)/2x11k>3/4由b^-4ac>=0得m

已知x1,x2是方程x^2+2x+m=0的根,且X1平方-X2平方=2,求M的值

x1+x2=-2,x1x2=mx1^2-x2^2=(x1+x2)(x1-x2)=2得x1-x2=-1两边平方,得(x1+x2)^2-4x1x2=14-4m=1,昨m=3/4

已知x1、x2是方程x平方+2006x+1=0的两个根,则(1+2008x1+x1平方)(1+2008x2+x2平方)

答案选4=(1+2006X1+X1的平方+2X1)(1+2006X2+X2的平方+2X2)=(0+2X1)(0+2X2)=4x1x2=4

已知,关于x的方程x的平方-2mx等于-m的平方+2x的两个实数根x1,x2满足|x1|等于x2,求m

x^2-2mx=-m^2+2xx^2-2(m-1)x+m^2=0△=[-2(m-1)]^2-4*1*m^2=4m^2-8m+4-4m^2=4(1-2m)x1+x2=2(m-1)|x1|=x21)当x1

已知X1,X2是方程X^-2X-5=0的解,求X1^+X1X2+X2^(^代表平方)

X1^+X1X2+X2^=(X1+X2)^-X1X2=2^+5=9再问:看不大懂,可以详细点么?再答:前面是一个形式上的转换,后面代入使用的韦达定理。再问:我们暂时还没有学“韦达定理”,所以··再答:

已知,x1 x2是方程x的一元二次方程,x平方加(2m+1)X+M平方+1=0,的两实数根,当x1平方+x2平方等于15

X^2+(2m+1)X+m^2+1=0Δ=(2m+1)^2-4(m^2+1)≥0得:m≥3/4,(应用韦达定理必须先考虑Δ≥0)X+X2=-(2m+1),X1*X2=m^2+1X1^2+X2^2(配方

已知关于X的方程X的平方-根号下6X+M=0(M为正整数),有两个实数根X1,X2,计算:X2/X1

已知关于X的方程X的平方-根号下6X+M=0(M为正整数),有两个实数根X1,X2,判别式大于等于0所以6-4M>=0所以M=1解出值做商即可为2+根3或2-根3

已知关于X的方程X的平方-根号下6x+m+0(m为正整数)有两个实数根x1+x2.计算x2/x1

由韦达定理,X1+X2=根号6X1*X2=M,则[(X1+X2)^2]/(X1*X2)=X2/X1+X1/X2+2=6/M令t=X2/X1,则可化为:t^2-(2-6/M)t+1=0,用求根公式解此方