已知x2 4y2 2xy,求x 2y取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:29:09
x2y+xy2-x-y=xy(x+y)-(x+y)=(x+y)(xy-1)∵x+y=-5,xy=7,∴原式=-5×(7-1)=-30.
∵xy+x+y=71,x2y+xy2=880,∴xy(x+y)=880,xy+(x+y)=71,∴x+y、xy可以看做一元二次方程t2-71t+880=0的两个解,解得t=55或16,∴x+y=55、
由题意可知m-1≠0,即m≠1,由3x2y|m|可知|m|=1,即m=±1,∴m=-1.当m=-1时,原式=2×(-1)2-3×(-1)+1=2+3+1=6.
(1)4ab+8-2b2-9ab-6=-2b2-5ab+2(2)原式=3x2y-2x2y+6xy-3x2y+xy=-2x2y+7xy,当x=-1,y=-2时,原式=-2×(-1)2(-2)+7×(-1
x+y+xy=9x+y=9-xyx^2y+xy^2=20xy(x+y)=20xy(9-xy)=20xy^2-9xy+20=0(xy-4)(xy-5)=0xy=4或xy=5x+y=5或x+y=4x^2+
由已知:xy+x+y=17,xy(x+y)=66,可知xy和x+y是方程t2-17t+66=0的两个实数根,得:t1=6,t2=11.即xy=6,x+y=11,或xy=11,x+y=6.x2+y2=(
因为A+B+C=x3-2y3+3x2y+xy2-3xy+4+y3-x3-4x2y-3xy-3xy2+3+y3+x2y+2xy2+6xy-6=1,所以,对于x、y、z的任何值A+B+C是常数.
①x2y+xy2=xy(x+y)=1×3=3;②x2+y2=(x+y)2-2xy=32-2×1=7.
原式=(x4-xy3)+(y4-x3y)+(3xy2-3x2y)=x(x3-y3)+y(y3-x3)+3xy(y-x)=(x3-y3)(x-y)-3xy(x-y)=(x-y)(x3-y3-3xy)=(
x3+y3-x2y-xy2=(x+y)(x2-xy+y2)-xy(x+y)=(x+y)(x2-2xy+y2)=(x+y)(x2+2xy+y2-4xy)=(x+y)[(x+y)2-4xy]=10×(10
∵xy<0,由二次根式的有意义,得y>0,∴x<0,∴原式=x2y=-xy.
若是209,则xy=8,x+y=15,算出x,y就不是整数了,与题意不符.若是34,x,y为3,5,符合题意.
(x2+z2)(x2+y2)(y2+z2)=(x+y)2-2xy×(x+z)2-2xz×(y+z)2-2yz--之后不清楚了
原式=5xy2-2x2y+3xy2-2x2y=8xy2-4x2y,∵(x-2)2+|y+1|=0,∴x-2=0,y+1=0,即x=2,y=-1,则原式=16+16=32.
楼上兄的回答思路是正确的,只不过修正一下小错误symsxyf=sin(x^2*y)*exp(-x-y);ddf=diff(diff(f,x),y);simple(ddf)
由题意得:3C=A+B=8x2y-6xy2-3xy+7xy2-2xy+5x2y=13x2y+xy2-5xy,∴C=13x2y+xy2−5xy3,故:C-A=13x2y+xy2−5xy3-(8x2y-6
xy+x+y=23,x²y+xy²=120,xy(x+y)=120把xy,x+y看成是z²-23z+120=0的两根解得z1=15,z2=8又把x,y看成是m²
(1)∵xn=5,yn=3,∴(x2y)2n=x4ny2n=(xn)4(yn)2=54×32=5625;(2)∵xn=5,yn=3,∴x3n÷y4n=(xn)3÷(yn)4=53÷34=12581.
∵x2-y2=xy,∴原式=x2y2+y2x2=x4+y4x2y2=(x2−y2)2+2x2y2x2y2=3x2y2x2y2=3.再问:先化简2a+1/a²-1÷a²-a/a
x²-x=7y²-y=7相减x²-x-y²+y=0(x+y)(x-y)=x-yx-y≠0约分x+y=1x²-x=7y²-y=7相加x&sup