已知y等于fx满足对任意x∈R
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:18:13
证明:任取R上的x1,x2,且x12,所以f(x2-x1)>2,f(x2-x1)-2>0所以f(x2)-f(x1)>0所以f(x1)
再问:谢谢啦再答:嗯
设x>yfx-fy=f(x-y+y)-fy=f(x-y)+fy-fy=f(x-y)因为x>y所以f(x-y)<0所以fx在R上是减函数
f(0)+f(1)=f(1)f(0)=0f(x)+f(-x)=f(0)f(x)=-f(-x)这是奇函数.f(2x)=f(x)+f(x)如果x>0f(2x)0上是减函数因为是奇函数,增减区间相同,所以f
(1)令x=y=0f(x+y)=f(x)f(y)-f(x)-f(y)+2变为f(0)=f(0)^2-2f(0)+2f(0)^2-3f(0)+2=0(f(0)-1)(f(0)-2)=0f(0)=1或f(
(1)令x=0,y=0则f(0+0)=f(0)+f(0)f(0)=2f(0),f(0)=0(2)令x=-y有f(x+y)=f(x)+f(y)即f(0)=f(x)+f(-x)又f(0)=0,所以f(x)
f36=f(4*9)=f4+f9=f(2+2)+f(3+3)=f2+f2+f3+f3=P+P+q+q=2(p+q)
证明:由于:f(x+y)=f(x)+f(y)则:令x=y=0则有:f(0+0)=f(0)+f(0)f(0)=2f(0)则:f(0)=0再令:y=-x则有:f[x+(-x)]=f(x)+f(-x)f(0
令y=0f(x)+f(0)=f(x)∴f(0)=0令y=-xf(x)+f(-x)=f(0)=0f(-x)=-f(x)定义域R所以是奇函数
令x=y=02f(0)=f(0)f(0)=0令y=-xf(x)+f(-x)=f(0)=0f(x)=-f(-x)是奇函数设x2>x1,则x2-x1>0f(x2-x1)
令x=y=02f(0)=f(0)f(0)=0令y=-xf(x)+f(-x)=f(0)=0-f(x)=f(-x)是奇函数
因为f(-x)=f(x),且f(-x+π)=f(x)所以f(-x)=f(-x+π)f(-7π/3)=f(-7π/3+π)=f(-7π/3+π+π)=f(-π/3)因为f(-x)=f(x),所以f(-π
(1)解析:∵函数f(x)满足对任意x,y∈R,都是有f(x+y)=f(x)f(y)-f(x)-f(y)+2成立令x=y=0代入得f(0+0)=f(0)^2-2f(0)+2==>f(0)^2-3f(0
1)令x=a,y=1,a∈Rf(a)+f(1)=f(a+1)f(a+1)-f(a)=f(1)=-2/3
(1);令x=y代入f(x-y)=f(x)-y(2x+1)得:f(0)=f(x)-x(2x+1)又由题意知f(0)=1所以可得f(x)=2x²+x+1第二题题目不清楚,你把题目写清楚些,表达
可以取到的,因为f(x+y)=fx+fy.取y=0,得到f(0)=0,再取y=-x,得到f(x)==-f(x),那么f(x)就是奇函数.函数图像关于原点对称,在(-6,+6)上必须有最大值和最小值.
是求f(x)?f(x)连续不?如果连续的话,有两种方法一种短的、一种长的关键是您学过连续和导数的定义么?再问:1.证明f(x)的图像关于点(0,-2)成中心对称2,若x>0,则有f(x)>-2,求证f
一.f(1*1)=f(1)+f(1)所以f(1)=0f(1)=f(-1*-1)=f(-1)+f(-1)=0所以f(-1)=0二.f(-x)=f(-1*x)=f(x)+f(-1)=f(x)所以为偶函数三
取a=b=0得f(0)=0,取a=x,b=-x得f(x)+f(-x)=0,故f(-x)=-f(x),所以是奇函数