已知{an}是递增数列的等差数列,a2,a4是方程x²-5x 6的根
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:20:34
数列an满足条件:A1=1,A2=r(r>0)数列{an+an+1}是公差为d的等差数,令bn=an+an+1即首项b1=a1+a2=1+rb3=a3+a4=b1+2d=1+r+2db5=a5+a6=
∵{an}是递增数列,∴an+1>an,∵an=n2+λn恒成立即(n+1)2+λ(n+1)>n2+λn,∴λ>-2n-1对于n∈N*恒成立.而-2n-1在n=1时取得最大值-3,∴λ>-3不清楚再问
设公比为q,由题有a2+qa2+q^2a2=28,a2+q^2a2=2﹙qa2+2﹚解出q=2,a2=4,则an=a1q^﹙n-1﹚=2的n次方
n=(a1+2a2+...+nan)/(1+2+...+n)a1+2a2+...+nan=(1+2+...+n)bn=n(n+1)bn/2(1)a1+2a2+...(n-1)an=n(n-1)b(n-
a2+a4=2*(a3+2),代入第一个式子,a3=8a2+a4=20a3/q+a3*q=20q=1/2或21/2舍a1=2an=2^n
a2+6是a1和a3的等差中项2(a2+6)=a1+a3①a1+a2+a3=39②将①带入②(要将a1+a3消去)得a2=9在②中将a1=a2/q,a3=a2q带入q=3,或者q=1/3求等比数列{a
题目没错啊,一楼复制的吧.a2(1+q+q^2)=282(a2*q+2)=a2+a2q^2,解得q=2,a2=4则a1=2所以a(n)=2^n
你可以想想看,如果对称轴是n=1.2,那么,a1是不是也小于a2,整个数列也是递增的呢?你再深入的画画图,你就可以发现,其实应该是对称轴小于1.5才对.这样就对了.不过做题时会思考提出疑问确实挺重要的
a(n)=a*n^2-na(n+1)=a*(n+1)^2-n-101/(2n+1)a>1/(2+1)=1/3
题目好像有问题“{an}满足a2+a3+a4+28”?会不会是a2+a3+a4=28如果这样,那解题如下:2(a3+2)=a2+a4a2+a4=28-a3代入解得:a3=8所以,8/q+8q=20解得
(Ⅰ)设等比数列{an}的公比为q,依题意有2(a3+2)=a2+a4,(1)又a2+a3+a4=28,将(1)代入得a3=8.所以a2+a4=20.于是有a1q+a1q3=20a1q2=8解得a1=
a3+2是a2,a4的等差中项a2+a4=2(a3+2)a2+a3+a4=28=2(a3+2)+a3a3=8没办法求通项啊.(题目说an全部整数吗?)
a(n+1)=a(n)/(2a(n)+1),等式两边同时取倒数得到1/a(n+1)=1/a(n)+2从而1/a(n)为首项为1,公差为2的等差数列所以1/a(n)=1+2(n-1)=2n-1a(n)=
设首项为a1,公比为q(q>1)所以a1*q+a1*q^2+a1*q^3=28a1*q+a1*q^3=2*(a1*q^2+2)联立解得:a1=2q=2所以an=2^n
(a3+1)是a2,a3的等差中项2(a3+1)=a2+a3a3-a2=-2数列递减与已知好像矛盾再问:已知递增等比数列{an}满足a2a3a4=64,且(a3+1)是a2,a3的等差中项,求数列{a
项数=(末项减首项)除以公差加1和=(末项加首项)乘以项数除以2
S(n+1)=4an+2Sn=4a(n-1)+2S(n+1)-Sn=4an-4a(n-1)=a(n+1)有a(n+1)-2an=2(an-2a(n-1))可得{a(n+1)-2an}为q=2的等比有公
an=n²+kn,这个函数的图像是以-k/2为对称轴的抛物线,由于数列中n≥1,且这个数列是单调递增数列,则只要对称轴-k/2
a1+a2+...+an=(1/2)(an²+an)a1+a2+...+a(n-1)=(1/2)(a(n-1)²+a(n-1))两式相减得an=(1/2)(an²+an)
1+b2+b3=log1/2(a1a2a3)=6,所以a1a2a3=(1/2)^6又an是等比数列,所以a1a3=(a2)²故(a2)³=(1/2)^6得a2=(1/2)²