已知数列an 是首项为正数的等比数列 令bn=log1/2an b1+b2+b3=3 b1b2b3=-3证bn 是等差数
已知数列an 是首项为正数的等比数列 令bn=log1/2an b1+b2+b3=3 b1b2b3=-3证bn 是等差数
已知等比数列{an}各项均为正数,数列{bn}满足bn=log2^an,b1+b2+b3=3,b1b2b3=-3,求an
已知等比数列{An}各项均为正数,数列{Bn}满足Bn=log2An(以2为底,An为真数),且B1+B2+B3=3,B
数列bn是等比数列,b1+b2+b3=21/8, b1b2b3=1/8 数列an中 an=log2^ bn,求数列an的
已知数列{an}成等差,数列{bn}满足bn=(1/2)的an次方,且b1+b2+b3=21/8,b1*b2*b3=1/
数列bn是等比数列,则b1+b2+b3=21/8,b1b2b3=1/8,数列an中,an=log2bn,求an的通项公式
{an}是等差数列,bn={1/2}^an,已知b1+b2+b3=21/8,b1b2b3=1/8,证明{bn}是等比数列
设数列{an}是等差数列,bn=(1/2)的an次方,又b1+b2+b3=21/8,b1b2b3=1/8,证明数列{bn
已知数列an为等比数列,bn=log1/2an,b2+b4=12,b3+b5=16,求数列bn的通项公式
设{an}是等差数列,bn={1/2}^an,已知b1+b2+b3=21/8,b1b2b3=1/8,证明{bn}是等比数
高一数列习题{an}是等差数列,bn={1/2}^an,已知b1+b2+b3=21/8,b1b2b3=1/8,求an通项
已知等比数列{An},大于0,且满足bn=log2An,b1+b2+b3=3 b1b2b3=-3 求{An}通项公式