已知三角形abc为任意三角形若将三角形abc绕点c顺时针
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:36:24
已知P为三角形ABC内任意一点.求证:1/2(AB+BC+CA)CA,PA+PB>AB,三式相加得:2(PA+PB+PC)>AB+BC+CAPA+PB+PC>(AB+BC+CA)/2.因为AB+AC>
证明AB+BC>OB+OC证:延长BO交AC于D因为AB+AD>BD=OB+OD,即AB+AD>OB+OD,又因为OD+DC>OC上述两不等式两边相加得:所以AB+AD+OD+DC>OC+OB+OD,
初三学过共圆吗?如果学过就简单了.因,角AEB=角ADB=90度所以,A,B,D,E四点共圆所以,角BAC+角BDE=180度所以,角BAC=角CDE三角形ABC相似于三角形DEC面积之比等于对应边长
(1)证明:∵点M、P、N分别是AB、BC、CA的中点,∴线段MP、PN是△ABC的中位线,∴MP∥AN,PN∥AM,∴四边形AMPN是平行四边形,∴∠MPN=∠A.(2)∠MP1N+∠MP2N=∠A
我提供简单思路,格式你自己整理过E做直线平行AF过F做直线平行AE两新做直线交于HAEHF是平行四边形,连接AH平行四边形对角线相互平分.因此AHEF交点就是M平行四边形对边相等,则EH=AF=AC邻
利用‘三角形的两边之和大于第三边’可得:PA+PB>ABPB+PC>BCPC+PA>CA将三式相加,得2(PA+PB+PC)>AB+BC+CAPB+PB+PC>(AB+BC+CA)/2延长BP于AC交
分析:构造出两个三角形,使之包含结论中的4条线段,可利用“三角形两边之和大于第三边”解决问题.延长BO交AC于D,则在△ABD中,AB+AD>OB+OD.在△ODC中,OD+DC>OC.所以AB+AD
证明:延长BP与AC边相交于点D,由三角形两边之和大于第三边得AB+AD>BD,PD+DC>PC,故AB+AD+PD+DC>BD+PC=PB+PD+PC,AB+AD+DC>PB+PC,即AB+AC>P
1.bo+oc+bc<ab+ac+bc则bo+oc<ab+ac2.oa+ob大于aboa+oc大于acob+oc大于bc则三式加起来就是OA+OB+OC>½(AB+BC+AC)再问:麻烦你,
△∠∵∴辅助线,连接AO并延长交BC于D;则∠BOC=∠BOD+∠COD,同样,∠BAC=∠BAD+∠CAD根据三角形外角和定理,∠BOD=∠BAD+∠1,∠COD=∠CAD+∠2∴∠BOC=∠BAD
PA+PB>ABPA+PC>ACPB+PC>BC所以:2(PA+PB+PC)>AB+BC+AC即PA+PB+PC>1/2(AB+BC+AC)
1.16三角形abcacebcdded面积相等(同底等高)2.ac=bc矩形的特征就是对角线相等切相互平分.已有ac=cdbc=ce故ac=bc即可
三边长分别为2,3,4利用余弦定理,a^2=b^2+c^2-2*b*c*CosA因为是连续的正整数a=b-1,c=b+1若为钝角,则最长边的余弦值是负值也就是b^2+c^2-a^2
cos=-1/4(sin)^2+(cos)^2=1所以这个角的正弦=√15/4两边是aba+b=4因为三角形面积=1/2absinC所以平行四边形=absinC=ab*√15/4a+b=4,b=4-a
延长AP,交BC于M,AC+MC>AM=AP+PM,BM+MP>PBAC+MC+BM+MP>AP+BP+PMPA+PB
延长CO交AB于D∵AC+AD>CO+OD∴AC+AD+BD>CO+OD+BD∵OD+BD>OB∴AC+AD+BD>CO+OD+BD>CO+OB∴AC+AB>OC+OB①同理CA+CB>OA+OB②B
ΔABC中:3²+4²=5²故ΔABC是直角三角形∵ΔABC∽ΔDEF∴ΔDEF也是直角三角形∵6²+8²=10²∴ΔDEF中的另外两边分别
1)试猜想线段AE与BF有何关系?说明理由因为△ABC绕C旋转180°,得到△FEC,这时BC旋转变为EC,因为是180°所以BE是在一个直线上,而且∠B=∠E,所以AB‖EF,(内错角相等),EF是