已知三角形adc三个内角abc的对边分别为adc,求证a的平方分之cos2A

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:25:19
已知三角形adc三个内角abc的对边分别为adc,求证a的平方分之cos2A
已知三角形ABC面积S=1/4(b平方+c平方),求三角形ABC三个内角的大小.

S=1/4(b^2+c^2)=1/2bcsinA由均值不等式得1/2bcsinA=1/4(b^2+c^2)>=1/4(2bc)当且仅当b=c等号成立得sinA>=1所以sinA=1所以A=90因为等号

证明三角形内角和定理:三角形的三个内角和等于180°;已知:如图3,三角形ABC求证:∠A+∠B+∠C=180

延长AB到D,过B作一条AC的平行线BF,利用平行线的同位角相等和内错角相等,把角A,C都转化到以B为顶点的角上就行了,试下吧,很简单的

已知三角形ABC的三个内角A,B,C成等差数列,且三个内角A,B,C的对边分别为a,b,c,求证

A+B+C=180°,2B=A+C=180°-B,则B=60°;则由余弦定理可知:cosB=(a²+c²-b²)/(2ac)=cos60°=1/2即(a²+c&

三角形ABC的内角ABC的对边分别为abc,已知b=3,三个内角ABC成等差数列,cosC=根号6/3,求c

三个内角成等差数列所以B=60°cosC=根号6/3sin^2C+cos^2C=1sinC=根号3/3用正弦定理b/sinB=c/sinC可得c=根号2

已知△ABC的三个内角

解题思路:本题考查正弦定理的应用。。。。。。。。。。解题过程:

在△ABC中,AD是三角形的角平分线,已知∠C=∠ADC,∠B=∠BAD,求:△ABC的各内角度数

设∠BAC=2X∵AD平分∠BAC,∠BAC=2X∴∠BAD=∠CAD=∠BAC/2=X∵∠B=∠BAD∴∠BAD=X∵∠ADC=∠BAD+∠B∴∠ADC=2X∵∠C=∠ADC∴∠C=2X∵∠ADC+

已知abc分别为三角形ABC三个内角A.B.C的对边长 若bcosA=acosB判断三角形的形状 并证明 若三角形面积为

正弦定理a/SinA=b/SinB根据bcosA=acosB,得a/CosA=b/CosB则SinA:SinB=CosA:CosB,则三角形角A=角B,为等腰.

已知三角形ABC的三个内角A B C成等差数列

等差数列的性质知道A+C=2B所以B=60如果没猜错的话,原式应该是sinA-sinC+√2[cos(A-C)]/2=√2/2移项得sinA-sinC=√2/2*[1-cos(A-C)]左边用和差化积

已知三角形ABC中,A,B,C为三角形的三个内角,且A

因为cos(A+180°-B)=-4/5所以cos(B-A)=4/5.而B、A显然都是锐角,所以sin(B-A)=3/5sinA=sin(B-(B-A))=sinBcos(B-A)-cosBsin(B

已知∠A、∠B、∠C是三角形ABC的三个内角

∠A+∠B+∠C=180∠A+∠B=100°∠C=80°∠C=4∠A∠A=20°∠A=20°∠B=80°∠C=80°∠C的外角=180°-∠C=100°

已知等腰三角形ABC的底边BC=12cm,其面积S三角形ABC=12根号3平方厘米,求三角形ABC的三个内角的度数

设底边上的高为AD,S△ABC=BC*AD/2=12√3cm²===>12*AD/2=12√3cm²===>AD=2√3cm,根据勾股定理,AC=√[(2√3)²+(12

已知a,b,c分别是三角形ABC三个内角A,B,C的对边

1、c=2,A=60°则AC边上的高=√3b=AC=面积×2/高=(√3/2)×2/√3=1因为b=c*sin60°三角形为直角三角形a=直角边=高=√32、由正弦定理a/b=sinA/sinB由ac

已知三角形ABC的三个内角的度数成等差数列,求其中的一项度数

设x-a,x,x+ax-a+x+x+a=1803x=180x=60°所以其中一项是60°

已知三角形ABC的三个内角的度数成等差数列,求其中一项的度数

60度因为角A+角B+角C=180又因为是等差数列所以2B=A+C则3B=180B=60

已知三角形ABC的三个内角ABC所对的三边分别是abc,三角形面积S=C方-(a-b)方,则tan2/c等于

请问是“tan2/c”吗?我是按照tan(C/2)算得,结果是1/4∵cosC=(a²+b²-c²)/(2ab)∴2ab*cosC=a²+b²-c&s

已知三角形的三个内角 ABC成等差数列,而ABC三内角的对边abc成等比数列,证明三角形ABC为正三角形.

由等差数列有2B=A+C,由等比可得b^2=ac,正弦定理得出Sin^2(B)=SinA*SinC,又因为Sin^2(B)=(1-Cos2B)/2,代入,则1-Cos2B=2SinA*SinC,然后第

已知三角形ABC的三个内角分别为A,B,C,证明

(1)因为三角形ABC的三个内角分别为A,B,C,所以A+B+C=180°,cos(B+C)=cos(π-A)=-cosA,故cosA+cos(B+C)=cosA-cosA=0(2)因为三角形ABC的

已知角ABC为三角形ABC的三个内角,OM=(sinB+cosB,cosC),ON=(sinC,sinB-cosB),O

由已知得:(sinB+cosB)sinC+(sinB-cosB)cosC=-1/5即-cos(B+C)+sin(B+C)=-1/5即cosA+sinA=-1/5联立cosA^2+sin^2=1得sin