已知三角形DEF为正三角形 AB=BF=CE .求证三角形ABC为正三角形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:33:04
首首先问哈,应该是相似吧相似三角形面积比为各边长比的平方所以设DEF的面积为9x,则ABD的为4x9x+4x=75得x=75/13所以DEF的面积为9*75/13
作AG垂直于BC,交BC于G,设AB=a,BC=b,CA=c,根据海伦公式S=根号下(P(P-a)(P-b)(P-c))S三角形BCE+S三角形ACF=((根号3)/4)*b^2+((根号3)/4)*
你要的答案是:因为等边三角形DEF,所以DE=DF=EF,又因为AB//EF,所以A、C是DE、DF的中点,所以AC=1/2EF,所以EF=2aDB²=DE²-EB²=(
△ECH,△GFH,△GAD均与△DBE相似,任选一对即可.如选△GAD证明如下:证明:∵△ABC与△EFD均为等边三角形,∴∠A=∠B=60°又∵∠BDG=∠A+∠AGD,即∠BDE+60°=∠AG
角AGD=角FGH,角GFH=角DAG=60度,所以角GHF=角ADG即ADG与GFH相似又角ADG+角BDE=120度,角FGH+角GHF=120,所以角BDE=FGH即证明了BDE与AGD,GFH
连接BN,CM∵等边△ACN,等边△ABM∴AB=AM,AC=AN∠CAN=∠BAM=60°∴∠CAN+∠BAC=∠BAM+∠BAC即∠BAN=∠CAM∴△BAN≌△MAC∴BN=CM又∵BN=2EF
设边长为x,CE=xcosα,BE=1-xcosα,因为α+∠EFD=∠BDE+∠B=180°-∠DEB所以α=∠BDE有正弦定理得BE/sinα=DE/sin60°,所以x=√3/√7sin(α+φ
看看这里的第2题,我想对于你这题有帮助的!
为1//K,因为DE/ABDF=/AC=EF/BC=1/K.
△BDE∽△AGD证明∵△ABC和△FDE都是等边三角形∴∠B=∠A=60°,∠FDE=60°∴∠BDE+∠BED=∠ADG+∠BDE=120°∴∠BED=∠ADG∴△BDE∽△AGD
我来答!(现做的,可能有些地方不太通顺,不过思路绝对正确)(证全等的时候大括号省略)证明:AM+CN=MN理由是:在BC上取一点M',使AM=CM',连接CE∵△ABC是等腰直角三角形∴∠A=∠B=4
本题可能是想证明在指定“边边角”这个定理在特定情况下是成立的.其实,这个定理在直角三角形中就是HL定理了.而这钝角三角形,可以构造一个直角三角来处理过B、E点做对边AC、DF的高,则新得到的两个大的直
在△ABC中∵BC=1,AB=2,CA=根号3∴∠ACB=90°,且∠ABC=60°设△DEF的边长为x由sinα=(2/7)根号7,可得cosα=根号下(3/7)在Rt△FEC中可得CF=[根号下(
∵△DEF全等于△ABC∴两个三角形的所有对应边都相等,周长也相等∴△DEF的三边分别是6,4,(15‐6‐4)=5
同学,你检查一下题目,仔细画下图先吧
三角形FHG相似于三角形CEG证明:因为三角形ABC、三角形DEF均为正三角形,则有角F=角FDE=角DEF=角A=角B=角C=60度又因为对顶角角FGH=角CGE根据两角对应相等,则两三角形相似可得
反证法不妨设∠A∠B∠C中∠A最大,则BC大于其它两边(大边对大角),所以EC>BD和AF,所以∠CFE在对应的3个角中最大,所以∠C在对应的三个角中最小因为∠A在对应的三个角中最大,所以∠AFD在对
连接BD,明显有AD=BD(1)角DAE角DBF=60°(2),又有角A=60度,角EDF=60度,所以有,角ADC=120°角ADE+角EDF+角FDC=角adc=120°所以角ADE+角FDC=6
连结BD,△BDF≌△BAE(ASA),一个角是60度的角,一个角是60-角EDB,边是AD=ED.DE=DF,∠DEF=60?线C?C泄EF为正三角形.有一个角是60度的等腰三角形是正三角形.
在△ABC中∵BC=1,AB=2,CA=√3∴∠ACB=90°,且∠ABC=60°设△DEF的边长为x由sinα=(2/7)√7,可得cosα=√(3/7)在Rt△FEC中可得CF=[√(3/7)]x