已知不共线的向量oa=a,ob=b,任意点m
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:54:03
我觉得在直线上.解释如下向量符号均省mOA+nOB=OPn=1-m则mOA+(1-m)OB=OPm(OA-OB)+OB=OPmBA=BP得证ABP共线
PA=OA-OP=(1-a)OA-bOBPB=OB-OP=(1-b)OB-aOA三点A,B,P共线PA=nPB(1-a)OA-bOB=n[(1-b)OB-aOA]-b/(1-b)=(1-a)/(-a)
(1)共面证明:∵1/3+1/3+1/3=1∴M,A,B,C四点共面∴向量MA、向量MB、向量MC三个向量共面注:4点共面的充要条件是x+y+z=1(2)四点都共面了,M自然在平面ABC内可能这题不是
因为C在AB上由平面向量性质向量OC=k向量OA+(1-k)向量OB=kc向量a+(1-k)d向量b,其中k为实数所以x=kc,y=(1-k)dx/c+y/d=1
OA-2OB+OC=0移向可得OA-OB=OB-OCBA=CBAB的模=BA的模CB的模=BC的模所以AB的模/BC的模=1
点p的集合{p|向量OP=(1-t)*向量OA+t向量OB,t∈[0,1]}构成什么图形?构成的图形是线段AB所有适合条件向量OP=(1-t)*向量OA+t向量OB,t∈R的点都在直线AB上吗对应的点
P,A,B三点共线,则存在唯一实数t,使得向量PA=tPB,(OA-OP)=t(OB-OP),(t-1)OP=-OA+tOB,OP=-1/(t-1)OA+t/(t-1)OB,则a=-1/(t-1),b
证明:∵OM=λOA+μOB且λ+μ=1,∴OM=λOA+(1-λ)OBOM=λ(OA-OB)+OBOM-OB=λ(OA-OB)从而MB=λAB从而向量MB与向量AB共线,∴M,A,B三点共线.
你的求证是不是写错了?应该是x/α+y/β=1吧.证明:OC向量=OA向量+AB向量=αa向量+AB向量因为C在直线AB上,即C、A、B共线则AC向量=m*AB向量所以OC向量=αa向量+m*AB向量
此时AM⊥OM,从而|OM|=根号(3-9/4)=根号3/2
如图,在不知道角MOA的情况下,随便取一个角度.之后把向量OM平移,做出向量OM1,则向量OA+OM的模长即为OM1的模长.可以看出,当旋转AM1时,OM1的长度也跟着变化,当OM1长度最小时,则角O
分为充分性证明和必要性证明.充分性证明,即当存在实数m、n使m+n=1、且向量OP=m向量OA+n向量OB,来证明A、B、P共线.必要性证明,即若A、B、P共线,则必存在实数m、n使m+n=1、且向量
OP=aOA+(1-a)OB.OP=aOA+OB-aOB=a(OA-OB)+OB=aBA+OBOP-OB=aBABP=aBA;B,P,A是共线的
因为OM=λOA+μOB且λ+μ=1,所以OM=λOA+(1-λ)OBOM=λ(OA-OB)+OBOM-OB=λ(OA-OB)MB=λAB所以向量MB与向量AB共线,∴M,A,B三点共线.
OA等等都是向量.如图:CP‖OB,DP‖OA, 则OP=OC+OD.OC/OA=BP/BA=PB/AB=(AB-AP)/AB=[(1-t)AB]/AB=1-t. OC=(1-t)
向量OP=向量OA+向量AP=向量OA+t向量AB=向量OA+t*(向量OB-向量OA)=(1-t)*向量OA+t*向量OB
可以将这个问题移入平面直角坐标系中将OB,OC作为基向量则OA=3OB-2OCA(3,-2)B(3,0)C(0,-2)|AB|=根号(3-3)^2+(-2-0)^2=2|BC|=根号(3-0)^2+(
|向量OA|=3,|向量OB|=2,角AOB=a,|向量OA+向量OB|=|向量OD=3/2角A=角B派-a, cosA=[2²+3²-(3/2)²]/(2*2
OM=λOA+(1-λ)OBOM=λ(OA-OB)+OBOM-OB=λ(OA-OB)MB=λAB证毕