已知函数f x =13-8x 根号2x^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 10:14:50
记u=x+√v,v=x^2+1v'=2xu'=1+v'/(2√v)=1+2x/(2√v)=1+x/√v则f(x)=lnuf'(x)=u'/u=(1+x/√v)/u=(x+√v)/(u√v)=1/√v=
2(x+根号x平方+1)大于等于0即可再一步一步拆根式注意根式内大于等于0但是整个函数的真数必须大于0.奇偶性的话看f(x)与f(-x)的关系相加为零为奇函数相等为偶函数.其余情况为非奇非偶函数.单调
f(x)=√3sin²x+sinxcosx=√3[(1-cos2x)/2]+1/2sin2x=1/2sin2x-√3/2cos2x+√3/2=sin(2x-π/3)+√3/2∵x∈[π/2,
这种题sinx和cosx前面的系数如果不能直接用sin或cos表示,就用根号下(a²+b²)表示就是根号下(2根三的平方+2²)=4,把4提出来,括号里sinx和cosx
f(x)=2√3sinxcosx+2sin^2x-1=√3sin2x-cos2x=2sin(2x-π/6)最小正周期T=π,单调递增区间:2kπ-π/2
函数f(x)=√(x+1)的定义域是x>-1.设任意x1、x2∈(-1,+∞),且x1
先化简f(x)=2根号3sinxcosx+2cos^2x-1=根号3sin2x+cos2x=2(根号3/2sin2x+1/2cos2x)=2sin(2x+π/6)则T=2π/ω=2π/2=πy=sin
(1)对a进行分类讨论:a=2时f(x)在R上单调增加;a《2时x《(a+2)/2时单调增加,(a+2)/2《x《2时单调减小,x》2时单调增加;a》2时x《2时单调增加,2《x《(a+2)/2时单调
fx=sin2x-根号3*(1+cos2x)+a+根号3=2sin(2x-60°)+aT=pi,增区间[k*pi-pi/6,k*pi+5pi/12],k属于Z 2.由题意得-5pi/6<
fx=2√3sinxcosx+2cos^2x-1=√3sin2x+cos2x=2(√3/2sin2x+1/2cos2x)=2sin(2x+π/6)所以最小正周期是π建议你再看看二倍角公式
√2=2^(1/2)=4^(1/4)8=2^3=4^(3/2)因此4^(1/4)≤x≤4^(3/2)∴1/4≤log4x≤3/2∴-3/2≤2(log4x-1)≤1,即-3/2≤f(x)≤1
1.f(x)=√3sinxcosx-cos²x+1/2=(√3/2)(2sinxcosx)-(1/2)(2cos²x-1)二倍角公式:2sinxcosx=sin(2x),2cos&
答:y=f(x)=2√3sinxcosx-2sin²x=√3sin2x+cos2x-1=2*[(√3/2)sin2x+(1/2)cos2x]-1=2sin(2x+π/6)-1y=f(x)关于
首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/
f(x)=2cos²(x/2)-√3sinxf(x)=2cos²(x/2)-2√3sin(x/2)cos(x/2)f(x)=2cos(x/2)[cos(x/2)-√3sin(x/2
f(x)=2sinx/2cosx/2√3cosx=sin(x/2x/2)√3cosx=sinx√3cosx=√(1^2√3^2)sin(xπ/3)=2sin(xπ/3)函数f(x)的最小正周期T=2π
奇函数然后取fx2–fx1再答:谢谢。
(1)化简可得f(x)=(sin(x/2))^2+((√3)/2)sinx-0.5f'(x)=sin(x/2)cos(x/2)+((√3)/2)cosx=sinx+√3cosx=0√3cosx=-si
f(x)=sin(x/2)cos(x/2)+√3*sin²(x/2)+√3/2=1/2*sinx+√3/2*(1-cosx)+√3/2=1/2*sinx-√3/2*cosx+√3=sin(x