已知函数f x=Inx-(x-1)2 2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 03:27:29
已知函数f x=Inx-(x-1)2 2
函数fx=inx+2x的零点有几个?

/>f(x)=lnx+2x=0则lnx=-2x零点的个数,即y=lnx和y=-2x交点的个数,画出图像,交点个数是1∴零点的个数是1(或者利用单调性判断也可以.)

证明;函数fx=Inx+3x+1的零点有且只有一个

fx=Inx+3x+1,f′(x)=1/x+3>0,函数单调增加.x→+0,f(x)→-∞,x→+∞,f(x)→+∞,因为函数连续,所以有正根,由单调性,只有一个正根.再问:请问f′(x)=1/x+3

已知函数fx=Inx/x 减x,求函数fx的单调区间?

用求导吧,查查求导公式就可以了.f(x)=(lnx/x)-x=此函数的定义域(0,+∞)求导得:f'(x)=[(1-lnx)/x^2]-1=(1-lnx-x^2)/x^2(x>0)当且仅当1-lnx-

已知函数fx是定义在[-e,0) (0,e]上的奇函数 当x属于(0,e]时 fx=ax+Inx (1)求f(x)

(1)当x∈[-e,0)时,-x∈(0,e],f(x)=-f(-x)=-a(-x)-ln(-x)=ax-ln(-x)(2)当x∈[-e,0)时,f(x)=ax-ln(-x),f'(x)=a-1/x当a

已知函数fx=ax-Inx,x∈(0,e),gx=Inx/x,其中e是自然对数的底数,a∈R

(1)当a=1时,f(x)=x-lnx.f'(x)=1-1/x.(即对f(x)求导).f'(x)=0时,得x=1,即此时f(x)取得极值.f''(x)=1/x^2>0.所以x=1为f(x)的极小值.带

已知函数fx=(1-x)/ax+inx :

1f(x)=(1-x)/ax+lnx=1/(ax)-1/a+lnx,a是正实数,定义域x>0f'(x)=1/x-1/(ax^2),当x=1/a时,f'(x)=0,当00所以当x∈[1/a,inf]时,

已知函数f(X)=ax+Inx

先求g(x)的最小值,对任意的f(x)

已知函数fx=1/x2+Inx,求fx的极值

函数fx=1/x2+Inx求导得到f‘(x)=-2/x^3+1/x令f’(x)=02/x^2=1x=√2所以函数极值是(√2,1/2-1/2ln2)再问:好像要考虑不可导点吧再答:x是大于零的啊,f(

已知函数f(x)=x^2+ax-Inx 若函数fx在[1,2]上是减函数,求a的取值范围

-lnx是减函数不用管它前面的二次函数对称轴-a/2要大于等于2自己解不等式吧

已知函数f(x)=-x^2+ax+1-Inx

1)f'(x)=-2x-a-1/x令f'(x)-2x-1/x令g(x)=-2x-1/x,g'(x)=-2+1/x^2,由g'(x)>0得,0-2√22)f'(x)=-2x-a-1/x(x>0)令-2x

已知函数fx=ax^2+bx+1,Fx={fx,x>0 -(fx),x

首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/

已知函数fx=inx-1/2mx∧2-x若fx在x=3处取得极值,求m的值

原题是:已知函数f(x)=lnx-(1/2)mx^2-x,若f(x)在x=3处取得极值,求m的值.f'(x)=1/x-mx-1(x>0)  由已知得f'(3)=1/3-3m-1=-3m-2/3=0  

已知函数fx=Inx-1/2ax2+x+b,ab属于R,1当x=1处取的极值为3求ab的值 2 求函数Fx的区间

f`=1/x-ax+1极值条件:f`(1)=2-a=0=>a=2极值:f(1)=0-1+1+b=3=>b=3定义域:(0,无穷)f``(x)=-1/x^2-2恒为负值f`(x)=1/x-2x+1单调减

已知函数fx=x-2/x+a(2-Inx),a>0 .讨论fx的单调性

定义域为(0,+∞)f'(x)=1+2/x²-a/x=(x²-ax+2)/x²f'(x)与g(x)=x²-ax+2符号一样对g(x)△=a²-8(a>

已知函数fx= -1,x

解当x≥1时,得x-1≥0,即f(x-1)=1此时不等式xf(x-1)≤1转化为x*1≤1即x≤1此时xf(x-1)≤1的解x=1当x<1时,x-1<0即f(x-1)=-1此时不等式xf(x-1)≤1

已知函数fx=Inx-ax^2+(a+2)x 求在区间a^2,a上的最大值

已知函数fx=Inx-ax^2+(a+2)x求在区间a^2,a上的最大值f(x)的定义域是x>0f`(x)=2ax+(a+2)+1/x=(2ax^2+(a+2)x+1)/x=(ax+1)(2x+1)/