已知函数f x的一个原函数为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:16:22
肯定是无数个,常熟可以随意的加
将(π/3,0)代入函数,得tan(2π/3+φ)=0令2π/3+φ=kπ,k是整数,得φ=kπ-2π/3,k是整数;因为φ的绝对值
∵∫f(x)dx=xsinx+c[Given,已知]∴f(x)=sinx+xcosx[Derivative,求导]∴∫xf'(x)dx=∫xdf(x)[Completingdifferentiatio
f(x)的一个原函数为(lnx)^2f(x)=[(lnx)^2]'=2lnx/x∫xf'(x)dx=∫xdf(x)=xf(x)-∫f(x)dx=2lnx-(lnx)^2+C
证明f(xy)=fx+fyf(1*1)=f(1)+f(1)f(1)=0∴f(x*1/x)=f(1)=f(x)+f(1/x)f(1/x)=-f(x)∴f(1/y)=-f(y)∴f(x/y)=f(x*1/
这个是积分的内容了!因为积分和求导是互为逆运算,知道导函数求原函数,就必须用到求不定积分!已知f'(x)=1/(3x+2)³则,f(x)=∫[1/(3x+2)³]dx=(1/3)∫
你只要想什么函数求导后会出现x的一次方的,是x²,但x²的导数是2X,所以前面乘以1/2即可,也就是说,y=x的一个原函数可以是y=x²/2再比如说y=sinx的原函数,
以π/2为最小正周期,那么π/2的整数倍也是周期f(17π/6)=f(3π-π/6)=f(-π/6)=f(-π/6+π/2)=f(π/3)=1
f(x)=2(sinx+cosx).cosx=2sinxcosx+2(cosx)^2=sin2x+2(cosx)^2-1+1=sin2x+cos2x+1所以f(x)的最小正周期为π
解题思路:首先函数在给定区间有意义,-1小于等于x小于等于1,然后结合单调性解不等式解题过程:
f(2x)同样是f函数,所以定义域下共同,也是(1,2)考虑到f(2x)是含2x的复函数,所以令2x=t,那么按上句话说的f(t)的定义域就是(1,2)即1
f(x)的定义域为(0,2],那么f(√x+1)中,√x+1的取值范围是(0,2],所以0
【1】f(x)=1+1/x,令X2>X1>0f(x2)-f(x1)=1/X2-1/X1=(X1-X2)/X1X2<0,∴f(x)在(0,+∞)为减函数.【2】f(-x)=1-1/x既
[-3,3](也就是关于原点对称的最大定义域)
若函数f(x)的周期为t,则函数f(ax+b)的周期为t/a因f(x)的周期为t,则f(ax+b+t)=f(ax+b)而f(a(x+t/a)+b)=f(ax+b+t)=f(ax+b)所以函数f(ax+
F(x)=∫_0^x(sint)/tdtF(√x)=∫_0^(√x)(sint)/tdtdF(√x)/dx=d(√x)/dx*sin(√x)/(√x)=sin(√x)/(√x)*1/(2√x)=sin
f(x)的一个原函数是sinx,那么f(x)应该为(sinx)'=cosx所以f'(x)=(cosx)'=-sinx,那么它的积分应该为:cosx+C,其中C为常数
因为f(x+1)=-f(x),所以f(x+2)=-f(x+1),于是有f(x+2)=f(x),因此f(x)是周期函数,它的周期是2.
不存在原函数,就和e^(-x²)一样.求不定积分无解,但是通过近似计算可求定积分.