已知函数f(x)=x^2 4x 3,且f(ax b)=x^2 10x 24

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:44:55
已知函数f(x)=x^2 4x 3,且f(ax b)=x^2 10x 24
已知函数f(x)=x3-3x.

(1)f′(x)=3(x+1)(x-1),当x∈[-3,-1)或x∈(1,32]时,f′(x)>0,∴[-3,-1],[1,32]为函数f(x)的单调增区间,当x∈(-1,1)为函数f(x)的单调减区

已知函数f(x)=-x3+3x2+9x-2

(Ⅰ)∵函数f(x)=-x3+3x2+9x-2∴f′(x)=-3x2+6x+9.令f′(x)<0,解得x<-1或x>3,∴函数f(x)的单调递减区间为(-∞,-1),(3,+∞).(Ⅱ)∵f(-2)=

已知函数f(x)=(x3+3x2+ax+b)e-x.

(Ⅰ)当a=b=-3时,f(x)=(x3+3x2-3x-3)e-x,故f′(x)=-(x3+3x2-3x-3)e-x+(3x2+6x-3)e-x=-e-x(x-3-9x)=-x(x-3)(x+3)e-

已知函数f(x)=x3+3ax2+3x+1

1)首先对F(X)求导,在给定定义域内单调,及F`(X)>=0或F`(X)=或

已知函数f(x)=X3+2X2+X,求函数的单调区间和极值

由已知得f(x)'=3x^2+4x+1令f(x)'=0则得x=-1或x=-1/3当x<-1时f(x)'>0当-1<x<-1/3时f(x)'<0当x>-1/3时f(x)'>0所以此函数单调增区间为(-∞

已知函数f(x)=x3-x2+x2

证明:令g(x)=f(x)-x.∵g(0)=14,g(12)=f(12)-12=-18,∴g(0)•g(12)<0.又函数g(x)在[0,12]上连续,所以存在x0∈(0,12),使g(x0)=0.即

已知函数f(x)=x3+x(x∈R).

(1)∵函数f(x)=x3+x的定义域为R,关于原点对称,又∵f(-x)=(-x)3+(-x)=-(x3+x)=-f(x)∴f(x)为奇函数,∵f′(x)=3x2+1>0,∴f(x)在R上是增函数,(

已知函数f x x3 ax2 3x

对f(x)求导,f(x)'=3x^2-2ax-3,f(x)在区间[1,+∞)上是增函数则f(x)'=3x^2-2ax-3在区间[1,+∞)上恒大于0,则需满足2a/6

已知函数f(x)=x3-ax-1.

(1)f′(x)=3x2-a,3x2-a≥0在R上恒成立,∴a≤0.又a=0时,f(x)=x3-1在R上单调递增,∴a≤0.(2)假设存在a满足条件,由题意知,f′(x)=3x2-a≤0在(-1,1)

已知函数f(x)=x3-2ax2-3x,x∈R.

(Ⅰ)当a=0时,f(x)=x3-3x,故f'(x)=3x2-3…(1分)因为当x<-1或x>1时,f'(x)>0当-1<x<1时,f'(x)<0故f(x)在(-∞,-1]和[1,+∞)上单调递增,在

已知函数f(x)=x3-4x2+4x+1,x∈R

(1)对f(x)求导得:f(x)'=3X^2-8X+4令f(x)>0得:x>2或x

已知函数f(x)=x3-ax2-3x

(1)f′(x)=3x2-2ax-3,∵x=-13是f(x)的极值点,∴f′(−13)=0,即3×(−13)2−2a×(−13)−3=0,解得a=4.经验证a=4满足题意.∴f(x)=x3-4x2-3

已知f(x)=x3-12

∵f(x)=x3-12x2-2x+5,∴f′(x)=3x2-x-2,由f′(x)=3x2-x-2>0,解得x>1,或x<−23所以原函数的单调增区间为(-∞,−23),(1,+∞).故答案为(-∞,−

已知函数f(x)=x3+bx2+cx+d的零点x1,x2,x3满足-2

f'(x)=3x^2+2bx+c说明原函数图象先增后减再增画出大致图象可知:f(-2)0f(0)

已知函数f(x)=x3+bx2+cx+d

解题思路:复数解题过程:见附件最终答案:略

已知函数f(x)=x3-3x.求f'(2)的值

如果是x的立方--3Xf(x)导数=3乘X的平方---3你要的答案就是:9记得采纳啊

已知函数f(x)={x2+2x,x≥0 -x2+2x,x3

f(x)={x²+2x,x≥0-x²+2x,x3x²+2x>3且x≥0,解得x>1-x²+2x>3且x

已知函数f(x)=x3次方-3ax在X=2处取得极值,

f'(x)=3x^2-3a在X=2处取得极值,则说明f'(2)=3*4-3a=0得到a=4.f'(x)=3x^2-12=3(x+2)(x-2)=0x1=-2,x2=2x0故f(2)是极小值.f(x)=

已知函数f(x)=x3+x 试求函数y=f(x)的零点

x3+x=0则x(x2+1)=0在实数范围内只有x=0才是零点.