已知函数f(x)=x²+ax+b,集合A={xf(x)}

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:27:00
已知函数f(x)=x²+ax+b,集合A={xf(x)}
已知a是实数,函数f(x)=ax

由a≠0可知,二次函数f(x)=ax2+2x−3−a+4a=a(x2+2ax+4a2)−4a−3−a+4a=a(x+2a)2−3−a(3分)所以(1)当-2a<0,即a>0时,函数y=f(x)在区间[

已知函数f(x)=x 2+ax+ax,且a<1

(1)∵函数f(x)=x 2+ax+ax=x+ax+a任取1≤x1<x2,∴x1-x2<0,x1•x2>1,又∵a<1得x1•x2-a>0则f(x1)-f(x2)=(x1+ax1+a)-(x

已知函数f(x)=3−ax

函数f(x)=3−ax,若f(x)在区间(0,1]上是减函数,则t=3-ax在区间(0,1]为减函数,且t≥0,分析可得a>0,且3-a≥0,解可得0<a≤3,∴a取值范围为(0,3]故答案为:(0,

已知函数f(x)=lnx+ax^2-3x

分析:极值点导数为零,但是导数为零的点不一定是极值点;如果1/2左右两侧导函数值都为负,即都单调递减,那么它不是极值点一般判定极值点还是按照课本上列表进行判定,只有两侧单调性相反的才是极值点,否则不是

已知函数f(x)=lnx+ax+(a+1)/x

解题思路:)当a>-1/2时,讨论函数单调性2)当a=1时,若关于x的不等式f(x)≥m^2-5m-3恒成立,求m的取值范解题过程:

已知函数f(x)=ln(x+1)+ax

f'(x)=1/(x+1)+a>=2xa>=2x+1/(x+1)g(x)=2x+1/(x+1)g'(x)=2-1/(x+1)²1

已知函数f(x)=e^x+ax

∵f(x)在(0,+∞)是增函数∴当x∈(0,+∞)时,f(x)'=e^x+a>0∴a>-e^x而-e^x所以a>=-1

已知函数f(x)=lg(ax^2-ax+1)

值域为R,即ax²-ax+1可取区间(0,+∞)上的任意值.若a=0,则ax²-ax+1变为1,f(x)=lg1=0,不满足题意,因此a≠0对于函数f(x)=ax²-ax

已知函数f(X)=ax+Inx

先求g(x)的最小值,对任意的f(x)

已知函数f(x)=x−ax−2,

(1)f(x)=x−ax−2=1+2−ax−2,由于函数在(2,+∞)上递减,所以2-a>0,即a<2,又a∈N,所以a=0,或者a=1a=0时,f(x)=1+2x−2;a=1时,f(x)=1+1x−

已知函数f(x)=3x+ax+2

解法一:∵函数f(x)=3x+ax+2在区间(-2,+∞)上单调递减,∴f′(x)=6−a(x+2)2 在区间(-2,+∞)上小于零,∴a>6,故答案为:(6,+∞).解法二:设x2>x1>

1.已知函数f(x)=ln(2-x)+ax

2.(1)当t>1时f(x)最小值为tlnt当0

已知函数f(x)=(1-x)/(ax) + lnx.

这样的题要利用第一问的结果a=1,f(x)=(1-x)/x+lnx对大于1的正整数n有n/(n-1)>1,函数在[1,+∞)上为增函数f(n/(n-1))=ln(n/(n-1))-1/n而f(1)=0

已知函数f(x)=-x^2+ax+1-Inx

1)f'(x)=-2x-a-1/x令f'(x)-2x-1/x令g(x)=-2x-1/x,g'(x)=-2+1/x^2,由g'(x)>0得,0-2√22)f'(x)=-2x-a-1/x(x>0)令-2x

已知函数f(x)=-x^2+ax+1-lnx

/>1)f'(x)=2x+a-1/xf"(x)=2+1/x^2>0函数存在最小值.最小值在x=1/2的右边:f(x)在(0,1/2)上是减函数f'(x)=2x+a-1/x=0,x>=1/2a=1/x-

已知函数f(x)=ax

偶函数,则奇次项系数为0,即b=0且定义域对称,即a-1+2a=0,得:a=1/3故f(x)=1/3*x^2+1,定义域为[-2/3,2/3]值域为:[1,31/27]

已知函数f(x)=x+ax

当a≤0时,函数函数f(x)=x+ax在R上是增函数,满足条件.当a>0时,∵x∈[2,+∞)时,x2≥4,由f′(x)=1-ax2≥0,即a≤x2,可得0<a≤4.综上可得,a≤4,故答案为:{a|

已知函数f(x)=ax(x

由题设[f(x1)-f(x2)]/(x1-x2)<0.易知,在R上,函数f(x)递减,一方面,当x<0时,f(x)=a^x递减,∴0<a<1,另一方面,当x≥0时,函数f(x)=(a-3)x+4a也递