已知函数fx=2tan wx π 3 的最小正周期为π 2.求函数fx的定义域
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 06:56:51
再问:已知函数fx满足3f(x)-2f(1-x)=2x+3,求解析式
(1)f(x)=2sin(2x+π/3)+2由2x+π/3=kπ+π/2,k∈Z得2x=kπ+π/6,k∈Z对称轴方程为x=kπ/2+π/12,k∈Z(2)g(x)=f(x)+m=2sin(2x+π/
f(5π/12)=Asin(5π/12+π/4)=Asin(2π/3)=A*√3/2,(√为根号)=3/2A=√3f(θ)+f(-θ)=3/2√3sin(θ+π/4)+√3sin(-θ+π/4)=3/
解由函数fx=x^3-x^2+ax+b若函数fx在x=1处取得极值知f'(1)=0由f'(x)=3x^2-2x+a即f‘(1)=3-2+a=0解得a=-1即f(x)=x^3-x^2-x+b得f'(x)
因为y=tanx在(π/2,π)单调递增所以kπ-π/2
fx=-1/2x²+lnx,显然x>0f'x=-x+1/x=(1-x²)/x令f'x1所以,fx在(1,+无穷)上单调递减fx在(0,1)上单调递增在(1/e,e)上,f(x)ma
周期等于2派.g(x)=2sinx;基函数再问:有过程吗??再答:这可以看出来,还要过程吗,,,,周期等于2派/x前的数1===2派;;g(x)=2sint(x+pi/3+p1/3)=2sinx;si
f(x)=(√3sinwx-coswx)coswx+1/2=2sin(wx-π/6)coswx+1/2=sin(wx-π/6+wx)+sin(wx-π/6-wx)+1/2=sin(2wx-π/6)-s
1、最小正周期T=2π/2=π;最大值=2×1+2=4;2、单调递增式时-π/2+2kπ≤2x+π/3≤π/2+2kπ(k∈Z)-5π/6+2kπ≤2x≤π/6+2kπ(k∈Z)-5π/12+kπ≤x
函数y=tanwx在区间(-π/2,π/2)上为增函数,则函数的最小正周期大于等于π.即T=π/w>=π,w的取值范围是(0,1].
1.T=πfx=2cosxsin(x+π/3)-√3sin^2x+sinxcosx=cosxsinx+√3cos^2x-√3sin^2x+sinxcosx=2sinxcosx+√3cos2x=sin2
再问:第一问为什么是之间,而不是正负无穷再答:我怎么觉得我写的是不是之间呀==
f(x)=cos(2x-π/3)-cos2x=1/2cos2x+√3/2sin2x-cos2x=√3/2sin2x-1/2cos2x=sin(2x-π/6)最小正周期T=2π/2=π(2)0
首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/
1.先对Fx求导,由题意知F`(1/2)=0可得出a的值2.由F`(x)=2a^2,再根据x的范围可解
奇函数然后取fx2–fx1再答:谢谢。
第一题A.第二题B
你的分析前一半是对的,一直到“那么2x的单调增区间是[-4分之π,4分之π]”.2x的单调递增区间是[-π/2,π/2],x的才是[-π/4,π/4].所以函数在x=-π/3处取得最小值为-2分之根号
解答;f(x)=sin(2x+3分之π)∴sin(2x+π/3)=-3/5∵x∈(0,π/2)∴2x+π/3∈(π/3,4π/3)∵sin(2x+π/3)
解1当2kπ-π/2≤2x+π/3≤2kπ+π/2,k属于Z时,y是增函数即2kπ-5π/6≤2x≤2kπ+π/6,k属于Z时,y是增函数即kπ-5π/12≤x≤kπ+π/12,k属于Z时,y是增函数